资源预览内容
第1页 / 共27页
第2页 / 共27页
第3页 / 共27页
第4页 / 共27页
第5页 / 共27页
第6页 / 共27页
第7页 / 共27页
第8页 / 共27页
第9页 / 共27页
第10页 / 共27页
亲,该文档总共27页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2020年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1(3分)实数3的相反数是()A3B3CD【分析】直接利用相反数的定义分析得出答案【解答】解:实数3的相反数是:3故选:A2(3分)分式的值是零,则x的值为()A2B5C2D5【分析】利用分式值为零的条件可得x+50,且x20,再解即可【解答】解:由题意得:x+50,且x20,解得:x5,故选:D3(3分)下列多项式中,能运用平方差公式分解因式的是()Aa2+b2B2ab2Ca2b2Da2b2【分析】根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可【解答】解:A、a2+b2不能运用平方差公式分解,故此选项错误;B、2ab2不能运用平方差公式分解,故此选项错误;C、a2b2能运用平方差公式分解,故此选项正确;D、a2b2不能运用平方差公式分解,故此选项错误;故选:C4(3分)下列四个图形中,是中心对称图形的是()ABCD【分析】根据中心对称图形的概念对各图形分析判断即可得解【解答】解:A、该图形不是中心对称图形,故本选项不合题意;B、该图形不是中心对称图形,故本选项不合题意;C、该图形是中心对称图形,故本选项符合题意;D、该图形不是中心对称图形,故本选项不合题意;故选:C5(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()ABCD【分析】根据概率公式直接求解即可【解答】解:共有6张卡片,其中写有1号的有3张,从中任意摸出一张,摸到1号卡片的概率是;故选:A6(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到ab理由是()A连结直线外一点与直线上各点的所有线段中,垂线段最短B在同一平面内,垂直于同一条直线的两条直线互相平行C在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D经过直线外一点,有且只有一条直线与这条直线平行【分析】根据垂直于同一条直线的两条直线平行判断即可【解答】解:由题意aAB,bAB,ab(垂直于同一条直线的两条直线平行),故选:B7(3分)已知点(2,a)(2,b)(3,c)在函数y(k0)的图象上,则下列判断正确的是()AabcBbacCacbDcba【分析】根据反比例函数的性质得到函数y(k0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,则bc0,a0【解答】解:k0,函数y(k0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,2023,bc0,a0,acb故选:C8(3分)如图,O是等边ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则EPF的度数是()A65B60C58D50【分析】如图,连接OE,OF求出EOF的度数即可解决问题【解答】解:如图,连接OE,OFO是ABC的内切圆,E,F是切点,OEAB,OFBC,OEBOFB90,ABC是等边三角形,B60,EOF120,EPFEOF60,故选:B9(3分)如图,在编写数学谜题时,“”内要求填写同一个数字,若设“”内数字为x则列出方程正确的是()A32x+52xB320x+510x2C320+x+520xD3(20+x)+510x+2【分析】直接利用表示十位数的方法进而得出等式即可【解答】解:设“”内数字为x,根据题意可得:3(20+x)+510x+2故选:D10(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH连结EG,BD相交于点O、BD与HC相交于点P若GOGP,则的值是()A1+B2+C5D【分析】证明BPGBCG(ASA),得出PGCG设OGPGCGx,则EG2x,FGx,由勾股定理得出BC2(4+2)x2,则可得出答案【解答】解:四边形EFGH为正方形,EGH45,FGH90,OGGP,GOPOPG67.5,PBG22.5,又DBC45,GBC22.5,PBGGBC,BGPBG90,BGBG,BPGBCG(ASA),PGCG设OGPGCGx,O为EG,BD的交点,EG2x,FGx,四个全等的直角三角形拼成“赵爽弦图”,BFCGx,BGx+x,BC2BG2+CG2,故选:B二、填空题(本题有6小题,每小题4分,共24分)11(4分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)1(答案不唯一)【分析】直接利用第二象限内点的坐标特点得出m的取值范围,进而得出答案【解答】解:点P(m,2)在第二象限内,m0,则m的值可以是1(答案不唯一)故答案为:1(答案不唯一)12(4分)数据1,2,4,5,3的中位数是3【分析】先将题目中的数据按照从小到大排列,即可得到这组数据的中位数【解答】解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:313(4分)如图为一个长方体,则该几何体主视图的面积为20cm2【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积【解答】解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为20cm2故答案为:2014(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中的度数是30【分析】根据平行四边形的性质解答即可【解答】解:四边形ABCD是平行四边形,D180C60,180(54070140180)30,故答案为:3015(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为则tan的值是【分析】如图,作ATBC,过点B作BHAT于H,设正六边形的边长为a,则正六边形的半径为a,边心距a求出BH,AH即可解决问题【解答】解:如图,作ATBC,过点B作BHAT于H,设正六边形的边长为a,则正六边形的半径为,边心距a观察图象可知:BHa,AHa,ATBC,BAH,tan故答案为16(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OEAC于点E,OFBD于点F,OEOF1cm,ACBD6cm,CEDF,CE:AE2:3按图示方式用手指按夹子,夹子两边绕点O转动(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是16cm(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm【分析】(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,求出矩形的长和宽即可解决问题(2)如图3中,连接EF交OC于H想办法求出EF,利用平行线分线段成比例定理即可解决问题【解答】解:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,OEOF1cm,EF2cm,ABCD2cm,此时四边形ABCD的周长为2+2+6+616(cm),故答案为16(2)如图3中,连接EF交OC于H由题意CECF6(cm),OEOF1cm,CO垂直平分线段EF,OC(cm),OEECCOEH,EH(cm),EF2EH(cm)EFAB,AB(cm)故答案为三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17(6分)计算:(2020)0+tan45+|3|【分析】利用零次幂的性质、二次根式的性质、特殊角的三角函数值、绝对值的性质进行计算,再算加减即可【解答】解:原式1+21+3518(6分)解不等式:5x52(2+x)【分析】去括号,移项、合并同类项,系数化为1求得即可【解答】解:5x52(2+x),5x54+2x5x2x4+5,3x9,x319(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表 类别项目人数(人)A跳绳59B健身操C俯卧撑31D开合跳E其它22(1)求参与问卷调查的学生总人数(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数【分析】(1)从统计图表中可得,“E组 其它”的频数为22,所占的百分比为11%,可求出调查学生总数;(2)“开合跳”的人数占调查人数的24%,即可求出最喜爱“开合跳”的人数;(3)求出“健身操”所占的百分比,用样本估计总体,即可求出8000人中喜爱“健身操”的人数【解答】解:(1)2211%200(人),答:参与调查的学生总数为200人;(2)20024%48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为2005931482240(人),80001600(人),答:最喜爱“健身操”的学生数大约为1600人20(8分)如图,的半径OA2,OCAB于点C,AOC60(1)求弦AB的长(2)求的长【分析】(1)根据题意和垂径定理,可以求得AC的长,然后即可得到AB的长;(2)根据AOC60,可以得到AOB的度数,然后根据弧长公式计算即可【解答】解:(1)的半径OA2,OCAB于点C,AOC60,ACOAsin602,AB2AC2;(2)OCAB,AOC60,AOB120,OA2,的长是:21(8分)某地区山峰的高度每增加1百米,气温大约降低0.6,气温T()和高度h(百米)的函数关系如图所示请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号