资源预览内容
第1页 / 共56页
第2页 / 共56页
第3页 / 共56页
第4页 / 共56页
第5页 / 共56页
第6页 / 共56页
第7页 / 共56页
第8页 / 共56页
第9页 / 共56页
第10页 / 共56页
亲,该文档总共56页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
固体物理学习题指导 2015年6月19日配合固体物理学(朱建国等编著)使用固体物理学习题指导 第1章 晶体结构1第2章 晶体的结合12第3章 晶格振动和晶体的热学性质20第4章 晶体缺陷32第5章 金属电子论35i第1章 晶体结构1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以Rf和Rb代表面心立方和体心立方结构中最近邻原子间的距离,试问Rf/Rb等于 多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a:对于面心立方,处于 面心的原子与顶角原子的距离为:Rf=a对于体心立方,处于体心的原子与顶角原子的距离为:Rb=a那么,=1.2 晶面指数为(123)的晶面ABC是离原点O最近的晶面,OA、OB和OC分别与基失a1,a2和a3重合,除O点外,OA,OB和OC上是否有格点?若ABC面的指数为(234),情况又如何?答:晶面族(123)截a1,a2,a3分别为1,2,3等份,ABC面是离原点O最近的晶面,OA的长度等于a1的长度,OB的长度等于a2长度的1/2,OC的长度等于a3长度的1/3,所以只有A点是格点。若ABC面的指数为(234)的晶面族,则A、B和C都不是格点。1.3 二维布拉维点阵只有5种,试列举并画图表示之。答:二维布拉维点阵只有五种类型,两晶轴,夹角,如下表所示。序号晶系基矢长度与夹角关系布拉维晶胞类型所属点群1斜方任意简单斜方(图中1所示)1,22正方简单正方(图中2所示)4,4mm3六角简单六角(图中3所示)3,3m,6,6mm4长方简单长方(图中4所示)有心长方(图中5所示)1mm,2mm1 简单斜方2 简单正方3 简单六角4 简单长方5 有心长方二维布拉维点阵1.4 在六方晶系中,晶面常用4个指数(hkil)来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120的共平面轴a1,a2,a3上的截距a1/h,a2/k,a3/i,第四个指数表示该晶面的六重轴c上的截距c/l.证明:i=-(h+k) 并将下列用(hkl)表示的晶面改用(hkil)表示:(001)(100)(010)答:证明设晶面族(hkil)的晶面间距为d,晶面法线方向的单位矢量为n。因为晶面族(hkil)中最靠近原点的晶面ABC在a1、a2、a3轴上的截距分别为a1/h,a2/k,a3/i,因此 (1)由于a3=(a1+ a2)把(1)式的关系代入,即得根据上面的证明,可以转换晶面族为(001)(0001),(100),(010),1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:(2)体心立方:(3)面心立方:(4)六方密堆积:(5)金刚石:。答:令Z表示一个立方晶胞中的硬球数,Ni是位于晶胞内的球数,Nf是在晶胞面上的球数,Ne是在晶胞棱上的球数,Nc是在晶胞角隅上的球数。于是有:边长为a的立方晶胞中堆积比率为假设硬球的半径都为r,占据的最大面积与总体积之比为,依据题意(1)对于简立方,晶胞中只含一个原子,简立方边长为2r,那么:= = (2)对于体心立方,晶胞中有两个原子,其体对角线的长度为4r,则其边长为,那么:= = (3)对于面心立方,晶胞中有四个原子,面对角线的长度为4r,则其边长为r,那么:= = (4)对于六方密堆积 一个晶胞有两个原子,其坐标为(000)(1/3,2/3,1/2),在理想的密堆积情况下,密排六方结构中点阵常数与原子半径的关系为a=2r,因此=(5)对于金刚石结构Z=8 那么=.1.6 有一晶格,每个格点上有一个原子,基失(以nm为单位)a=3i,b=3j,c=1.5(i+j+k),此处i,j,k为笛卡儿坐标系中x,y,z方向的单位失量.问:(1)这种晶格属于哪种布拉维格子?(2)原胞的体积和晶胞的体积各等于多少?答:(1)因为a=3i,b=3j,而c=1.5(i+j+k)=1/2(3i+3j+3k)=1/2(a+b+c)式中c=3c。显然,a、b、c构成一个边长为3*10-10m的立方晶胞,基矢c正处于此晶胞的体心上。因此,所述晶体属于体心立方布喇菲格子。(2)晶胞的体积= = =27*10-30(m3)原胞的体积=13.5*10-30(m3)1.7 六方晶胞的基失为:,求其倒格子基失,并画出此晶格的第一布里渊区.答:根据正格矢与倒格矢之间的关系,可得:正格子的体积=a(b*c)= 那么,倒格子的基矢为 , ,其第一布里渊区如图所示:1.8 若基失a,b,c构成正交晶系,求证:晶面族(hkl)的面间距为答:根据晶面指数的定义,平面族(hkl)中距原点最近平面在三个晶轴a1,a2,a3上的截距分别为,。该平面(ABC)法线方向的单位矢量是这里d是原点到平面ABC的垂直距离,即面间距。由|n|=1得到故1.9 用波长为0.15405nm的X射线投射到钽的粉末上,得到前面几条衍射谱线的布拉格角如下序号12345/()19.61128.13635.15641.15647.769已知钽为体心立方结构,试求:(1)各谱线对应的衍射晶面族的面指数;(2)上述各晶面族的面间距;(3)利用上两项结果计算晶格常数.答:对于体心立方结构,衍射光束的相对强度由下式决定:考虑一级衍射,n=1。显然,当衍射面指数之和(h+k+l)为奇数时,衍射条纹消失。只有当(h+k+l)为偶数时,才能产生相长干涉。因此,题给的谱线应依次对应于晶面(110)、(200)、(211)、(220)和(310)的散射。由布喇格公式得 同法得应用立方晶系面间距公式可得晶格常数把上面各晶面指数和它们对应的面间距数值代入,依次可得a 的数值*10-10m为3.2456,3.2668,3.2767,3.2835,3.2897取其平均值则得1.10 平面正三角形,相邻原子的间距为a,试给出此晶格的正格矢和倒格矢;画出第一和第二布里渊区.答:参看下图,晶体点阵初基矢量为 用正交关系式求出倒易点阵初基矢量b1,b2。设 由 得到下面四个方程式 (1) (2) (3) (4)由(1)式可得:由(2)式可得:由(3)式可得:由(4)式可得:于是得出倒易点阵基矢 补充习题:1.11 什么是晶体?什么是非晶体?试各举一例说明。答:晶体是原子、离子或分子按照一定的周期性,在结晶过程中,在空间排列形成具有一定规则的几何外形的固体,如铁;非晶体是其中的原子不按照一定空间顺序排列的固体,如玻璃。1.12 什么是原胞?什么是晶胞?答:原胞是具有2维、3维或者其他维度平移对称性的简单点阵结构的最小重复单元,晶胞是为了反映晶体的周期性和对称性而选取的重复单元。1.13 什么是布拉维原胞?什么是WS原胞?答:布拉维原胞就是晶胞,WS原胞是以晶格中某一格点为中心,作其与近邻的所有格点连线的垂直平分面,这些平面所围成的以改点为中心的凸多面体即为该点的WS原胞。1.14 试计算面心立方和体心立方的堆垛因子答:设面心立方晶胞的边长为a,则堆垛成面心立方晶胞的原子半径最大为。由于面心立方体晶胞中有个原子,所以面心立方的堆垛因子设体心立方晶胞的边长为a,则堆垛成体心立方晶胞的原子半径最大为。由于体心立方晶胞中有个原子,所以体心立方的堆垛因子1.15 绘出面心立方的晶胞和原胞示意图。答:面心立方的晶胞和原胞如下图所示,黑色-晶胞,蓝色-原胞。1.16 试绘出二维正方晶格的WS原胞,设边长为a。答:1.17 请列表给出简立方、体心立方、面心立方的最近邻(第一近邻)到第十近邻的原子数、原子间距。答:设简立方、体心立方、面心立方晶胞边长为。第n近邻简立方体心立方面心立方原子数原子间距原子数原子间距原子数原子间距1681221266381224462412524824624687122424728302469242412102424241.18 绘出金刚石结构的两个面心立方子晶格的套构情况。答:金刚石结构是由两个面心立方格子沿体对角线位移1/4的长度套构而成。1.19 绘出立方晶胞里的晶向与晶面:答:1.20 绘出六方晶胞里的晶向与晶面:答:1.21 按照WS原胞的构造法,如果BCC中一个原子的所有最近邻原子的连线的中垂面围成一个什么图形,体积为多少?如果BCC中一个原子的所有次近邻原子的连线的中垂面又围成一个什么图形,体积为多少?答:原点和8个近邻格点连线的垂直平分面围成的正八面体,沿立方轴的6个次近邻格点连线的垂直平分面割去八面体的六个角,形成的14面体八个面是正六边形, 六个面是正四边形。1.22 为什么晶体没有5次对称轴,而准晶体有5次对称轴?答:设在图中,是晶体中某一晶面上的一个晶列,AB是这晶列上相邻两个格点的距离。晶体中某一晶面的晶列(1) 旋转角,通过A处的u轴顺时针方向转过后,使B1点转到B,若通过B处u轴逆时针方向转过角后,A1点转到A。经过转动后,要使晶格能自身重合,则A、B点必须是格点,由于A、B和AB平行,AB必须等于AB的整数倍,即,于是。(2) 旋转角,同理,有,于是有综上,旋转角改写为。即晶体中只存在1、2、3、4、6次转轴。另外一方面因为晶体的旋转对称性要受到内部结构中点阵无限周期性的限制,有限外形的旋转不能破坏点阵无限的周期排列,所以晶体没有5次对称轴,而准晶体是介于周期晶体和非晶玻璃之间的一种新的固态物质形态,即准晶体可以有5次对称轴。1.23 试写出沿x2轴有90旋转轴的变换矩阵。答:(1)逆时针旋转(2)顺时针旋转1.24 举例宏观对称元素与微观对称元素宏观:转动 对称中心 反演 对称面 反映微观:平移和平移轴 螺旋旋转与螺旋轴 滑移反映和滑移面1.25 对于立方晶系,晶体的介电常数矩阵简化为什么情况?答:在晶体中,电位移矢量与电场强度间的关系可以写为:对于立方晶系,当把电场E同晶体一起转动时,电位移矢量也将作相同的转动。用D表示转动后的电位移矢量。设电场E沿着立方轴y,这时,但是,转动是以E为轴的,实际上电场并未改变。而上述转动又是立方体的一个对称操作,所以转动前后晶体没有任何差别,电位移矢量D应不变,即代入,可得:,即如果取E沿z方向,并绕
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号