资源预览内容
第1页 / 共21页
第2页 / 共21页
第3页 / 共21页
第4页 / 共21页
第5页 / 共21页
第6页 / 共21页
第7页 / 共21页
第8页 / 共21页
第9页 / 共21页
第10页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
这是我参加电子大赛本科组D题的论文,不足之处还请各位高手来指正!本科组(D题)数字电压表【摘 要】 本设计是基于ATmega16单片机开发平台和自动控制原理的基础上实现的一种高精度、智能化的数字电压表系统。该系统采用ATmega16单片机作为控制核心,以12位的A/D转换MAX187为数据采样系统,实现被测电压的高精度数据采样;使用系列比较器检测输入电压的范围,并通过继电器阵列实现了输入量程的全自动转换;同时具有显示模式的按键切换、LCD液晶显示等显著优点。系统具有人性化的交互界面,硬件配置合理,控制方案优化,完全满足题目的基本要求。【关键字】全自动量程转换 电压检测 MAX187 ATmega16 LCD显示Digital VoltmeterSummary : The design is based on ATmega16 and automation development platform based on the principle of achieving a high accuracy and intelligent digital voltage meter system. The system uses ATmega16 core as a control, 12 to the MAX187 D conversion for data sampling system, the measured voltage and high-precision data sampling; Series comparison with the use of detection of the input voltage range, and through Relay array of input range of automatic conversion; the same time it is the display mode switch button, LCD display significant advantages. Humanized system of interface, hardware configuration reasonable control program optimization, the subject completely meet the basic requirements.Keywords: Disney-range conversion, voltage detection, MAX187, ATmegal16, LCD Display.目 录一、方案设计与论证 11.试题分析 12.系统控制方案 13.各模块方案 21)单片机选择 22)A/D采样系统 33)自动量程切换 34)电压检测 35)显示部分 3二、理论分析与电路设计 41.系统总体设计与框图 42.实际电路图 42.1单片机系统 42.2 AD转换电路 62.3信号调理模块 62.4继电器模块 92.5按键与LCD显示电路设计 103.信号调理总体设计电路图 10三、软件设计与流程 111.系统软件介绍 112.软件程序流程图 11四、实验测试与结果分析 12五、参考文献 13六、附录 13数字电压表一、方案设计与论证1.试题分析根据题目要求,系统设计需要基于自动控制原理,实现电压量程的自动切换、数据采样、电压显示等功能。主要来说,系统由信号调理电路、A/D转换电路、按键输入电路、单片机控制系统、LCD显示系统等几个模块组成。由于本设计属于高精度实时监测控制系统,因此各模块必须具有高精度、低噪声、可靠性强等诸多性能要求。2.系统控制方案方案一仅采用CPLD作为控制核心部件的方案选用一片CPLD作为系统的核心部件,实现控制与处理的功能。CPLD具有速度快、编程容易、资源丰富、开发周期短等优点,可利用VHDL语言进行编写开发。但CPLD在控制上较单片机有较大的劣势。同时,CPLD的处理速度非常快,而电压表的数据采样速度不可能太高,在这一点上,MCU就已经可以胜任了。若采用该方案,必将在控制上遇到许许多多不必要增加的难题。为此,我们不采用该种方案,进而提出了第二种设想。图1.2.1 以CPLD为核心部件的原理图方案二仅采用单片机作为控制核心部件的方案如图1.2.2 所示:我们采用单片机作为整个系统的核心,用其输入电压的范围、控制信号调理电路,实现输入量程的自动切换,以达到其既定的高精度性能指标。充分分析我们的系统,其关键在于实现电压调理的自动量程控制,而在这一点上,单片机就显现出来它的优势控制简单、方便、快捷。而且,单片机其资源丰富、控制功能强大及可位寻址操作、价格低廉等,使得在实际制作过程中是一个较为理想的方案。鉴于上述分析,在充分考虑到系统的需要及开发周期的情况下,我们决定选用第二种方案,即“仅采用单片机作为核心部件的方案”。3.各模块方案1)单片机选择方案一选用51系列单片机。51系列单片机目前得到广泛使用,如89S51它除了89C51所具有的优点外,还具有可在线编程,可在线仿真的功能,这让调试变得方便。当与凌阳十六位单片机相比时,AT89S51八位单片机的价格便宜,再者编程方便。编程技术及外围功能电路的配合使用都很成熟,这对于在网上查找相关资料和在图书馆查找相关资料时非常方便的。但本系统是个多信息处理的复杂程序控制系统,需要占用大量的硬件资源,89S51单片机中的资源在此就显得相当紧张,将对整个系统的性能产生很大的影响。方案二选用AVR系列单片机。AVR单片机是高速单片机,硬件采用哈佛(Harward)结构,达到一个时钟周期可以执行一条指令,绝大部分指令都为单周期指令,而MSC-51要12个时钟周期执行一条指令;它支持程序的在系统编程ISP,开发门槛较低,性价比高;有丰富的外设,如RTC、 WATCHDOG、 AD 转换器、PWM、UART接口等,部分型号还可以使用片内振荡器提供系统18 MHz的系统时钟,使该类单片机无外加晶振器件即可工作;I/O口功能强、驱动能力大,I/O口有输入/输出、三态高阻输入,也可设定内部拉高电阻作输入端的功能, 工业级产品,具有大电流(灌电流)1040 mA,可直接驱动可控硅SSR或继电器, 节省了外围驱动器件;具有较大容量EEPROM,可擦写10万次的EEPROM,为掉电后数据的保存带来方便,来电后能记住掉电时的工作状态,EEPROM容量为64 B4 KB ;AVR是低功耗单片机,具有休眠省电功能(Power Down)及闲置(Idle)低功耗功能。一般耗电在12.5 mA;AVR单片机内嵌高质量的Flash程序存储器,增强性的高速同/异步串口,具有硬件产生校验码、硬件检测和校验侦错、两级接收缓冲、波特率自动调整定位(接收时)、屏蔽数据帧等功能,提高了通信的可靠性,方便程序编写,更便于组成分布式网络和实现多机通信系统的复杂应用,串口功能大大超过MCS-51/96单片机的串口,加之AVR单片机高速,中断服务时间短,故可实现高波特率通讯。根据题目要求,综合考虑上述方案,我们选用ATMEGA16L单片机方案。2)A/D采样系统根据题目要求,要实现0-20V电压的精确测量,测量精度达到1mV,最高采样数据要达到20000,而12位的A/D为:212=4096,15位的ADC为:215=16384,16位的ADC为:216=32768,所以必须采用16位ADC才能满足题目的要求,然而16位的ADC价格昂贵,实验室并不常见,加上系统开发时间的限制,我们只好采用实验室较为常见的12位AD。方案一用1片12位并行AD集成芯片ADC574,12位并行DAC574集成芯片的转换速度快,而且精度高,但是其占用大量的单片机端口,外围电路较复杂。方案二采用一片12位串行ADC芯片MAX187的优点是精度比较高,而且占用单片机的端口资源较少,外围电路也比较简单,缺点是转换速度不如并行AD转换快。但是,数字电压表对数据采样的速度要求不高,而且串行DA的程序也容易实现,所以我们最终决定选择方案二来实现对输入电压的采样。3)自动量程切换智能数字电压表中关键技术之一为自动量程转换问题。方案一用单片机控制多组继电器进行量程切换。特点是简单实用,缺点是机械噪声大。方案二采用光耦进行切换,其特点是控制部分隔离,无机械切换的噪声,可靠性好。显然,采用方案二电气特性功能上更好,但是由于本系统中要使用多组电子开关,相对而言,采用继电器切换方式降低了设计的难度,因而更加有利于短期内的系统开发。 4)电压检测为了实现对输入的微小信号或大信号进行精确测量,我们拟采用信号放大或衰减预处理电路,即需要对被测量电压的极性、范围进行判断和确定,从而将被测电压的基本信息传递给单片机系统。方案一用多组比较器进行电压范围的分段检测,实现对输入电压的粗略测量。方案二输入信号通过电阻分压后,由ADC转换成数字信号传递给单片机系统实现电压的粗略测量。由于预处理电路只需要对输入电压进行范围的粗略测量,所以方案一完全能够满足实际要求,而方案二虽然测量结果较为精确,但电路复杂,还增加了编程难度。故采用的方案一。5)显示部分方案一采用LED数码管动态扫描显示。采用8位LED动态扫描显示的优点是能改善外部信号对显示的干扰,但单片机在工作时要求CPU不停地对LED更新,这将会降低系统的运行速度,且占用资源比较多。方案二串行通讯方式实现8位LED的静态显示。采用串行通讯方式实现8位LED的静态显示,虽可降低端口的使用,也不会降低CPU的运行速度,但整个显示界面显得不太友好。方案三采用LCD液晶显示器显示。液晶显示功耗低,轻便防震,显示界面友好。因此本系统采用方案三。二、理论分析与电路设计1.系统总体设计与框图系统框图如图2.1.1所示。本系统采用ATMEGAL16L单片机作为控制核心,以12位的A/D转换MAX187为数据采样系统,实现被测电压的高精度数据采集与显示。该过程是:首先通过系列比较器检测输入电压的极性与范围,单片机根据电压极性与范围对继电器阵列进行相应的动作,实现了输入量程的全自动转换。经过调理后的电压信号由AD转换后送出液晶显示,同时可以通过按键进行显示模式切换并具有过压保护、过压报警的功能。2.实际电路图2.1单片机系统本设计是以ATMEGA16L单片机为控制核心,其外围接口电路如图所示。 图2.2.2 ATMEGA16L单片机接口图ATmega16是基于增强的AVR RISC结构的低功耗8 位CMOS微控制器。由于其先进的指令集以及单时钟周期指令执行时间,ATmega16 的数据吞吐率高达1 MIPS/MHz,从而可以缓减系统在功耗和处理速度之间的矛盾。Tmega16 有如下特点:16K字节的系统内可编程Flash(具有同时读写的能力,即RWW),512 字节 EEPROM,1K字节 SRAM,32 个通用I/O 口线,32 个通用工作寄存器,用于边界扫描的 JTAG 接口,支持片内调试与编程,三个具有比较模式的灵活的定时器 / 计数器(T/C),片内/外中断,可编程串行USART,有起始条件检测器的通用串行接口,8路10位具有可选差分输入级可编程增益 (TQFP 封装 ) 的 ADC ,具有片内振荡器的可编程看门狗定时器,一个 SPI串行端口,以及六个可以通过软件进行选择的省电模式。 工作于空闲模式时 CPU 停止工作,而 USART
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号