资源预览内容
第1页 / 共26页
第2页 / 共26页
第3页 / 共26页
第4页 / 共26页
第5页 / 共26页
第6页 / 共26页
第7页 / 共26页
第8页 / 共26页
第9页 / 共26页
第10页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
高中数学(函数和导数)综合练习含解析学校:_姓名:_班级:_考号:_一、选择题(题型注释)1已知函数(1)当时,求证:,均有 (2)当时,恒成立,求a的取值范围2已知定义域为的奇函数的导函数为,当时,若, ,则的大小关系正确的是( )A B C D 3函数在内有最小值,则实数的取值范围是( )A B C D4在函数的图象上有点列,若数列是等差数列,数列是等比数列,则函数的解析式可能为( )A B C D5设是上的单调递减函数;:函数的值域为如果“且”为假命题,“或”为真命题,则正实数的取值范围是( )A B C D 6如果函数y的图像与曲线恰好有两个不同的公共点,则实数的取值范围是( )A B C D 7设函数,若,则实数的取值范围是( )A B C D8函数,当时,恒成立,则实数的取值范围是( )A B C D 9曲线在点处的切线方程为( )A B C D10设,若,则( )A B C D二、填空题(题型注释)11函数在处有极值10,则 12设定义域为的单调函数,对任意的,都有,若是方程的一个解,且,则实数 13由曲线,直线及轴所围成的图形的面积为 14设,若,则 15已知函数是定义在R上的奇函数,则不等式的解集是 16已知是定义在上的周期为3的函数,当时,.若函数在区间-3,4上有10个零点(互不相同),则实数的取值范围是 .三、解答题(题型注释)17已知函数,其中aR (1)若函数在单调递增,求实数的取值范围 (2) 若曲线yf(x)在点(1,f(1)处的切线垂直于y轴,求函数f(x)的单调区间与极值18设函数(1)求函数的最小值;(2)设,讨论函数的单调性;(3)在第二问的基础上,若方程,()有两个不相等的实数根,求证:19已知函数,(1)若的一个极值点为1,求a的值; (2)设在上的最大值为,当时,恒成立,求a的取值范围20已知c0,设命题p:函数为减函数,命题q:当时,函数恒成立,如果p或q为真命题,p且q为假命题,求c的取值范围21如果一元二次方程至少有一个负的实数根,试确定这个结论成立的充要条件22已知c0,设命题p:函数为减函数,命题q:当时,函数恒成立,如果p或q为真命题,p且q为假命题,求c的取值范围23某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示用煤(吨)用电(千瓦)产值(万元)甲产品7208乙产品35012但国家每天分配给该厂的煤、电有限,每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产量最大?最大日产量为多少?24已知函数(为常数),其图象是曲线(1)当时,求函数的单调减区间;(2)设函数的导函数为,若存在唯一的实数,使得与同时成立,求实数的取值范围;(3)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由25已知函数f(x)=,其中a0()若a=1,求曲线y=f(x)在点(2,f(2)处的切线方程;()若在区间上,f(x)0恒成立,求a的取值范围26已知函数()求的值;()求函数的单调区间和极值27已知函数.(1)求函数的单调区间和极值;(2)若对任意的,恒有成立,求的取值范围;(3)证明:.28已知函数,(为常数).(1)若在处的切线过点(0,-5),求的值;(2)设函数的导函数为,若关于的方程有唯一解,求实数的取值范围;(3)令,若函数存在极值,且所有极值之和大于,求实数的取值范围.29已知函数满足,且当时,当时,的最大值为-4.(1)求实数的值;(2)设,函数.若对任意,总存在,使,求实数的取值范围.30已知函数(为自然对数的底数).(1)当时,求过点处的切线与坐标轴围成的三角形的面积;(2)若在(0,1)上恒成立,求实数的取值范围.试卷第1页,总3页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。参考答案1(1)1;(2)【解析】试题分析:(1)对进行求导得到其导函数,因为的一个极值点为1,所以,代入即可求出的值;(2)对进行求导得到其导函数,判断出其在上的单调性,从而可以判断出最大值在哪个点取得,求出其最大值;代入,分离参数,构造一个新函数,只需小于等于其最小值即可试题解析:(1)a1时, f(x)x2xln x,在(1,)上是增函数,所以在(1,)上是减函数,当时,均有(2)由由x1,)知,xln x0,所以f(x)0恒成立等价于a在时恒成立,令h(x),有h(x)单调递增所以 h(x)h(1)1,所以a1考点:利用导数研究函数的极值和最值2D【解析】试题分析:设,是定义在上的奇函数,是定义在的偶函数,当时,此时函数单调递增,又故选D考点:利用导数研究函数的单调性【思路点睛】本题考察的是比较大小相关知识点,一般比较大小我们可以采用作差法、作商法、单调性法和中间量法,本题的题设中无解析式,所以我们无法采用作差法、作商法和中间量法,只能采用单调性法,经观察得需要进行构造函数,研究构造的函数的单调性,再利用函数的奇偶性进行转化到同一侧,即可判断出所给几个值的3C【解析】试题分析:由题可得,所以在上单调递减,在上单调递增,所以在处取得最小值,又在内有最小值,所以只需,即,故选C考点:函数的最小值4D【解析】试题分析:对于函数上的点列有,由于 是等数列差,所以因此,这是一个与无关的常数,故是等比数列,所以合题意,故选D考点:1、等差数列的定义;2、等比数列的定义;3、指数函数【易错点晴】本题主要考查函数与数列的综合问题,属于难题解决该问题应该注意的事项:(1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化本题构造出指数函数巧妙地将等差数列、等比数列结合起来5A【解析】试题分析:本题考查命题真假的判定与推理,若命题为真命题,则若命题为真命题,则且即由条件得:真假或假真,故正实数的取值范围是故选A考点:1、函数的单调性、值域;2、命题与逻辑联接词6A【解析】试题分析:根据题意画出函数与曲线的图象,如图所示,当与圆相切时两函数图象恰好有两个不同的公共点,过作,因为,所以,此时,当圆半径大于,即时,两函数图象恰好有两个不同的公共点,综上,实数的取值范围是,故选A考点:1、含绝对值的函数;2、圆的几何性质;3、数形结合7D【解析】试题分析:由题若即当时,此时即为结合即,可知此时;当时,此时即为结合即,取交集即为,综上 实数的取值范围是考点:分段函数,对数函数的性质【名师点睛】本题考查分段函数,对数函数的性质,对数不等式的解法等知识,属中档题解释由已知条件得到仍为分段函数,讨论和两种情况,化简不等式,解之即可注意每一种情况中秋的是交集,而最后两种情况求的是并集8D【解析】试题分析:由导函数可知是单调递增奇函数,所以在解不等式时要充分利用这一条件,又函数为奇函数,所以,即,又因为函数在上为单调递增的函数,所以必有,当时,对任意的不等式恒成立,当时,有,当时,所以,综上所述,的取值范围是,故正确选项为D考点:利用函数的单调性,奇偶性解不等式【思路点睛】本题主要考查利用导函数来判断函数的单调性,以及解有关复合函数的不等式在解有关函数的不等式时,如果函数是高次的复合函数,则需要先利用导函数判断外函数在定义域上的单调性,将不等式转化为关于内函数的不等式,继续解不等式,从而求出参数的范围,在解不等式,要充分利用题中已知的函数性质9A【解析】试题分析:求曲线某点的切线,需要先求得该点的导数,的导函数为,则曲线在点处的切线斜率为,利用点斜式可求得切线的方程为,故正确选项为A考点:导数的运用10B【解析】试题分析:先求的导函数,可知,即,可求得,故正确选项为B考点:导数的计算117【解析】试题分析:对原函数求导可得,由题得,当时,此时不是极值点,不合题意,经检验符合题意,所以考点:函数的极值122【解析】试题分析:根据题意,对任意的,都有,又由是定义在上的单调函数则为定值,设,则,又,可得,故,又是方程的一个解,所以是的零点,分析易得,所以函数的零点介于之间,故考点:导数运算【思路点睛】由题意可得为定值,设为,代入即可得到的值,从而可得函数的解析式,代入化简新构造函数,根据零点存在性定理即可得到零点所在范围,从而求出所得答案此类题目一般都需要进行整体换元来做,进而可以求出函数的解析式,然后根据题意即可得到所求答案13【解析】试题分析:联立方程得到两曲线的交点,因此曲线,直线及轴所围成的图形的面积为考点:定积分在求面积中的应用14【解析】试题分析:考点:函数的导数15【解析】试题分析:仔细观察,会发现条件中的,所以可构造函数,由得在上为增函数,又,所以,则函数在上在;又,所以在上在,是定义在R上的奇函数,则在在上在,而不等式的解集即的解,所以解集为考点:函数的单调性,奇偶性,以及导函数的运用【思路点睛】本题的关键在于能够根据构造出一个对解题带来方便的新函数,因为题中只说明是奇函数及一个零点,而解不等式,必须要知道值域在那些区间上为正,那些区间上为负,而通过新构造的函数,结合其单调性及的零点,刚好能解决这一难题本题同时也考查了学生对公式的逆运用16【解析】试题分析:因为是定义在上的周期为3的函数,当时,.画出函数和在的图像如图所示,考点: 根的存在性及根的个数判断17(1);(2)单调递增区间为和,单调递减区间为,极大值,极小值为 【解析】试题分析:(1)对原函数进行求导得到,令,分离参数得到,只需小于等于即可得到所求答案(2)由(1)和题意可知,即可求出的值,代入导函数,令,得到其零点,列表即可判断出函数的单调性和极值试题解析:(1)对求导得函数在单调递增,在恒成立 ,的取值范围 (2)对求导得,由在点(1,f(1)处的切线垂直于直线轴,可知f(1)a0,解得a 由(1)知
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号