资源预览内容
第1页 / 共11页
第2页 / 共11页
第3页 / 共11页
第4页 / 共11页
第5页 / 共11页
第6页 / 共11页
第7页 / 共11页
第8页 / 共11页
第9页 / 共11页
第10页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
1.1.1从梯子的倾斜水准谈起(一)教学目标 (一)知识与技能1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜水准、坡度等,外能够用正切实行简单的计算.1.经历观察、猜想等数学活动过程,发展合情推理水平,能有条理地,清晰地阐述自己的观点.2.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.提升解决实际问题的水平.3.体会解决问题的策略的多样性,发展实践水平和创新精神. (三)情感与价值观1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜水准、坡度的数学意义,密切数学与生活的联系.教学难点 理解正切的意义,并用它来表示两边的比.教学方法引导探索法.教具准备FLASH演示教学过程1.创设问题情境,引入新课用FLASH课件动画演示本章的章头图,提出问题,问题从左到右分层次出现: 问题1在直角三角形中,知道一边和一个锐角,你能求出其他的边和角吗? 问题2随着改革开放的深入,上海的城市建设正日新月异地发展,幢幢大楼拔地而起.70年代位于南京西路的国际饭店还一直是上海最高的大厦,但经过多少年的城市发展,“上海最高大厦”的桂冠早已被其他高楼取代,你们知道当前上海最高的大厦叫什么名字吗?你能应用数学知识和适当的途径得到金茂大厦的实际高度吗?通过本章的学习,相信大家一定能够解决.这节课,我们就先从梯子的倾斜水准谈起.(板书课题1.1.1从梯子的倾斜水准谈起).2.讲授新课用多媒体演示如下内容:师梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?“陡”或“平缓”是用来描述梯子什么的?请同学们看下图,并回答问题(用多媒体演示)(1)在图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?生梯子AB比梯子EF更陡.师你是如何判断的?生从图中很容易发现ABCEFD,所以梯子AB比梯子EF陡.生我觉得是因为ACED,所以只要比较BC、FD的长度即可知哪个梯子陡.BCFD,所以梯子AB比梯子EF陡.师我们再来看一个问题(用多媒体演示)(2)在下图中,梯子AB和EF哪个更陡?你是怎样判断的?师我们观察上图直观判断梯子的倾斜水准,即哪一个更陡,就比较困难了.能不能从第(1)问中得到什么启示呢?生在第(1)问的图形中梯子的垂直高度即AC和ED是相等的,而水平宽度BC和FD不一样长,由此我想到梯子的垂直高度与水平宽度的比值越大,梯子应该越陡.师这位同学的想法很好,的确如此,在第(2)问的图中,哪个梯子更陡,应该从梯子AB和EF的垂直高度和水平宽度的比的大小来判断.那么请同学们算一下梯子AB和EF哪一个更陡呢?生,.,梯子EF比梯子AB更陡.多媒体演示:想一想如图,小明想通过测量B1C1:及AC1,算出它们的比,来说明梯子的倾斜水准;而小亮则认为,通过测量B2C2及AC2,算出它们的比,也能说明梯子的倾斜水准.你同意小亮的看法吗?(1)直角三角形AB1C1和直角三角形AB2C2有什么关系?(2)和有什么关系?(3)如果改变B2在梯子上的位置呢?由此你能得出什么结论?师我们已经知道能够用梯子的垂直高度和水平宽度的比描述梯子的倾斜水准,即用倾斜角的对边与邻边的比来描述梯子的倾斜水准.下面请同学们思考上面的三个问题,再来讨论小明和小亮的做法.生在上图中,我们能够知道RtAB1C1,和RtAB2C2是相似的.因为B2C2AB1C1A90,B2AC2B1AC1,根据相似的条件,得RtAB1C1RtAB2C2.生由图还可知:B2C2AC2,B1C1AC1,得B2C2/B1C1,RtAB1C1RtAB2C2.生相似三角形的对应边成比例,得.如果改变B2在梯子上的位置,总能够得到RtB2C2ARtRtB1C1A,仍能得到所以,无论B2在梯子的什么位置(除A外), 总成立.师也就是说无论B2在梯子的什么位置(A除外),A的对边与邻边的比值是不会改变的.现在如果改变A的大小,A的对边与邻边的比值会改变吗?生A的大小改变,A的对边与邻边的比值会改变.师你又能得出什么结论呢?生A的对边与邻边的比只与A的大小相关系,而与它所在直角三角形的大小无关.也就是说,当直角三角形中的一个锐角确定以后,它的对边与邻边之比也随之确定.师这位同学回答得很棒,现在我们再返回去看一下小明和小亮的做法,你作何评价?生小明和小亮的做法都可以说明梯子的倾斜程度,因为图中直角三角形中的锐角A是确定的,因此它的对边与邻边的比值也是唯一确定的,与B1、B2在梯子上的位置无关,即与直角三角形的大小无关.生但我觉得小亮的做法更实际,因为要测量B1C1的长度,需攀到梯子的最高端,危险并且复杂,而小亮只需站在地面就可以完成.师这位同学能将数学和实际生活紧密地联系在一起,值得提倡.我们学习数学就是为了更好地应用数学.由于直角三角形中的锐角A确定以后,它的对边与邻边之比也随之确定,因此我们有如下定义:(多媒体演示)如图,在RtABC中,如果锐角A确定,那么A的对边与邻边之比便随之确定,这个比叫做A的正切(tangent),记作tanA,即tanA= . 注意:1.tanA是一个完整的符号,它表示A的正切,记号里习惯省去角的符号“”.2.tanA没有单位,它表示一个比值,即直角三角形中A的对边与邻边的比.3.tanA不表示“tan”乘以“A”.4.初中阶段,我们只学习直角三角形中,A是锐角的正切.思考:1.B的正切如何表示?它的数学意义是什么?2.前面我们讨论了梯子的倾斜程度,课本图13,梯子的倾斜程度与tanA有关系吗?生1.B的正切记作tanB,表示B的对边与邻边的比值,即tanB=.2.我们用梯子的倾斜角的对边与邻边的比值刻画了梯子的倾斜程度,因此,在图13中,梯子越陡,tanA的值越大;反过来,tanA的值越大,梯子越陡.师正切在日常生活中的应用很广泛,例如建筑,工程技术等.正切经常用来描述山坡的坡度、堤坝的坡度.如图,有一山坡在水平方向上每前进100m,就升高60 m,那么山坡的坡度(即坡角的正切tan就是tan=.这里要注意区分坡度和坡角.坡面的铅直高度与水平宽度的比即坡角的正切称为坡度.坡度越大,坡面就越陡.3.例题讲解多媒体演示例1如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?分析:比较甲、乙两个自动电梯哪一个陡,只需分别求出tan、tan的值,比较大小,越大,扶梯就越陡.解:甲梯中, tan= .乙梯中,tan=.因为tantan,所以乙梯更陡.例2在ABC中,C=90,BC=12cm,AB=20cm,求tanA和tanB的值.分析:要求tanA,tanB的值,根据勾股定理先求出直角边AC的长度.解:在ABC中,C90,所以AC=16(cm),tanA=tanB=所以tanA=,tanB=.4.随堂练习1)如图,ABC是等腰直角三角形,你能根据图中所给数据求出tanC吗?分析:要求tanC.需从图中找到C所在的直角三角形,因为BDAC,所以C在RtBDC中.然后求出C的对边与邻边的比,即的值.解:ABC是等腰直角三角形,BDAC,CDAC31.5.在RtBDC中,tanC =1.2).如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55 m,求山的坡度.(结果精确到0.001)分析:由图可知,A是坡角,A的正切即tanA为山的坡度.解:根据题意:在RtABC中,AB=200 m,BC55 m,AC=192.30(m).TanA=所以山的坡度为0.286.5.课时小结本节课从梯子的倾斜程度谈起,经历了探索直角三角形中的边角关系,得出了在直角三角形中的锐角确定之后,它的对边与邻边之比也随之确定,并以此为基础,在“Rt”中定义了tanA.接着,我们研究了梯子的倾斜程度,工程中的问题坡度与正切的关系,了解了正切在现实生活中是一个具有实际意义的一个很重要的概念.6.课后作业习题1.1第1、2题. 课后反思
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号