资源预览内容
第1页 / 共14页
第2页 / 共14页
第3页 / 共14页
第4页 / 共14页
第5页 / 共14页
第6页 / 共14页
第7页 / 共14页
第8页 / 共14页
第9页 / 共14页
第10页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
带电粒子在有界匀强磁场中运动的问题有界匀强磁场是指在局部空间内存在着匀强磁场。对磁场边界约束时,可以使磁场有着多种多样的边界形状,如:单直线边界、平行直线边界、矩形边界、圆形边界、三角形边界等。这类问题中一般设计为:带电粒子在磁场外以垂直磁场方向的速度进入磁场,在磁场内经历一段匀速圆周运动后离开磁场。粒子进入磁场时速度方向与磁场边界夹角不同,使粒子运动轨迹不同,导致粒子轨迹与磁场边界的关系不同,由此带来很多临界问题。1、基本轨迹。(1)单直线边界磁场(如图1所示)。带电粒子垂直磁场进入磁场时。如果垂直磁场边界进入,粒子作半圆运动后垂直原边界飞出;如果与磁场边界成夹角进入,仍以与磁场边界夹角飞出(有两种轨迹,图1中若两轨迹共弦,则12)带电粒子在有界磁场中的运动问题,综合性较强,解这类问题既要用到物理中的洛仑兹力、圆周运动的知识,又要用到数学中的平面几何中的圆及解析几何知识。1.带电粒子在单边界磁场中的运动v【例题】一个负离子,质量为m,电量大小为q,以速率V垂直于屏S经过小孔O射入存在着匀强磁场的真空室中(如图11)。磁感应强度B的方向与离子的运动方向垂直,并垂直于图1中纸面向里。BSPO(1)求离子进入磁场后到达屏S上时的位置与O点的距离。(2)如果离子进入磁场后经过时间t到达位置P,证明:直线OP与离子入射方向之间的夹角跟t的关系是。解析:(1)离子的初速度与匀强磁场的方向垂直,在洛仑兹力作用下,做匀速圆周运动。设圆半径为r,则据牛顿第二定律可得: ,解得如图12所示,离了回到屏S上的位置A与O点的距离为:AO=2r。所以(2)当离子到位置P时,圆心角(见图12):,因为,所以。(2)平行直线边界磁场(如图2所示)。带电粒子垂直磁场边界并垂直磁场进入磁场时,速度较小时,作半圆运动后从原边界飞出;速度增加为某临界值时,粒子作部分圆周运动其轨迹与另一边界相切;速度较大时粒子作部分圆周运动后从另一边界飞出。【例题】如图15所示,一束电子(电量为e)以速度V垂直射入磁感强度为B,宽度为d的匀强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是30,则电子的质量是 ,穿过磁场的时间是 。BABdVV300O解析:电子在磁场中运动,只受洛仑兹力作用,故其轨迹是圆弧的一部分,又因为fV,故圆心在电子穿入和穿出磁场时受到洛仑兹力指向交点上,如图15中的O点,由几何知识知,AB间圆心角30,OB为半径。r=d/sin30=2d,又由r=mV/Be得m=2dBe/V又AB圆心角是30,穿透时间t=T/12,故t=d/3V。带电粒子在长足够大的长方形磁场中的运动时要注意临界条件的分析。如已知带电粒子的质量m和电量e,若要带电粒子能从磁场的右边界射出,粒子的速度V必须满足什么条件?这时必须满足r=mV/Bed,即VBed/m。(3)矩形边界磁场(如图3所示)。带电粒子垂直磁场边界并垂直磁场进入磁场时,速度较小时粒子作半圆运动后从原边界飞出;速度在某一范围内时从侧面边界飞出;速度为某临界值时,粒子作部分圆周运动其轨迹与对面边界相切;速度较大时粒子作部分圆周运动从对面边界飞出。【例题】长为L的水平极板间,有垂直纸面向内的匀强磁场,如图16所示,磁感强度为B,板间距离也为L,板不带电,现有质量为m,电量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度V水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )Ollr1v+qvA使粒子的速度V5BqL/4m;C使粒子的速度VBqL/m;D使粒子速度BqL/4mV5BqL/4m时粒子能从右边穿出。粒子擦着上板从左边穿出时,圆心在O点,有r2L/4,又由r2mV2/Bq=L/4得V2BqL/4mV20.【解析】本题考查带电粒子在复合场中的运动。带电粒子平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力平衡。设电场强度大小为E,由 ,可得,方向沿y轴正方向。带电微粒进入磁场后,将做圆周运动。 且 r=R如图(a)所示,设磁感应强度大小为B。由,得方向垂直于纸面向外(2)这束带电微粒都通过坐标原点。解析:方法一从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动,其圆心位于其正下方的Q点,如图(b)所示,这束带电微粒进入磁场后的圆心轨迹是如图(b)的虚线半圆,此圆的圆心是坐标原点O。通过作图可知,这束带电微粒都是通过坐标原点后离开磁场的方法二从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动。如图c示,若P点与O点的连线与y轴的夹角为,其圆心Q的坐标为(-Rsin,Rcos),圆周运动轨迹方程为。而磁场的边界是圆心坐标为(0,R)的圆周,其方程为 X2+(Y-R2)=R2联立以上两式知:带电微粒做圆周运动的轨迹与磁场边界的交点为 x=-Rsin x=0 y=R(1+cos) 或 y=0 坐标为-Rsin, R(1+cos) 的点就是P点,须舍去。由此可见,这束带电微粒都是通过坐标原点后离开磁场的。(3)这束带电微粒与x轴相交的区域是x0带电微粒在磁场中经过一段半径为r(r=2R )的圆弧运动后,将在y轴的右方(x0)的区域离开磁场并做匀速直线运动,如图c所示。靠近M点发射出来的带电微粒在穿出磁场后会射向x轴正方向的无穷远处;靠近N点发射出来的带电微粒会在靠近原点之处穿出磁场。所以,这束带电微粒与x同相交的区域范围是x0.5、带电粒子在环状磁场中的运动【例题】核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。如图所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。设环状磁场的内半径为R1=0.5m,外半径R2=1.0m,磁场的磁感强度B=1.0T,若被束缚带电粒子的荷质比为q/m=4c/,中空区域内带电粒子具有各个方向的速度。试计算(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度。(2)所有粒子不能穿越磁场的最大速度。r1解析:(1)要粒子沿环状的半径方向射入磁场,不能穿越磁场,则粒子的临界轨迹必须要与外圆相切,轨迹如图18所示。由图中知解得由得所以粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度为。(2)当粒子以V2的速度沿与内圆相切方向射入磁场且轨道与外圆相切时,则以V1速度沿各方向射入磁场区的粒子都不能穿出磁场边界,如图19所示。OO2由图中知由,得所以所有粒子不能穿越磁场的最大速度是6、带电粒子在“绿叶形”磁场中的运动【例题】如图所示,在xoy平面内有很多质量为m、电量为e的电子,从坐标原点O不断以相同的速率V0沿不同方向平行xoy平面射入第I象限。现加一垂直xoy平面向里、磁感强度为B的匀强磁场,要求这些入射电子穿过磁场都能平行
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号