资源预览内容
第1页 / 共8页
第2页 / 共8页
第3页 / 共8页
第4页 / 共8页
第5页 / 共8页
第6页 / 共8页
第7页 / 共8页
第8页 / 共8页
亲,该文档总共8页全部预览完了,如果喜欢就下载吧!
资源描述
祝您考上理想学校 加油!2021江苏考研数学一真题及答案一、选择题(本题共 10 小题,每小题 5 分,共 50 分.每小题给出的四个选项中,只有一个选项是符合题目要求,把所选选项前的字母填在答题卡指定位置上.) ex - 1(1)函数 f (x)= x, x 0 ,在 x = 0 处1, x = 0(A)连续且取极大值.(B)连续且取极小值.(C)可导且导数为 0.(D)可导且导数不为 0.【答案】D.好好学习 天天向上【解析】因为lim f (x)= limex - 1=1 = f (0) ,故 f (x) 在 x = 0 处连续;x0x0xf (x) - f (0)ex - 1-1xe x -1 - x11因为lim= lim=lim=,故 f (0) =,正确答案为 D.x0x - 0x0x - 0x0x 222(2)设函数 f ( x, y ) 可微,且 f (x +1, ex ) = x(x +1) 2 , f (x, x2 ) = 2x2 ln x ,则 df (1,1) =(A) dx + dy .(B) dx - dy .(C) dy .(D) -dy .【答案】C.12【解析】 f (x +1, ex ) + ex f (x +1, ex ) = (x +1) 2 + 2x(x +1)12f (x, x2 ) + 2xf (x, x2 ) = 4x ln x + 2xx = 0x = 1分别将 y = 0 , y = 1 带入式有f1(1,1) + f2(1,1) = 1 , f1(1,1) + 2 f2(1,1) = 2联立可得 f1(1,1) = 0 , f2(1,1) = 1 , df (1,1) = f1(1,1)dx + f2(1,1)dy = dy ,故正确答案为 C.(3) 设函数 f (x) =sin x 在 x = 0 处的 3 次泰勒多项式为ax + bx2 + cx3 ,则1+ x2(A) a = 1,b = 0, c = - 7 .(B) a = 1,b = 0, c = 7 .6(C) a = -1,b = -1, c = - 7 .(D)66a = -1,b = -1, c = 7 .6【答案】A.【解析】根据麦克劳林公式有sin xx33 237 33f (x) = 1+ x2 = x - 6 + o(x ) 1 - x+ o(x ) = x -x6+ o(x )故a = 1,b = 0, c = - 7 ,本题选 A.60(4) 设函数 f ( x ) 在区间0,1上连续,则1 f ( x )dx =n 2k -1 1n 2k -1 1(A) lim f .(B) lim f .n k =1 2n 2nn k =1 2n n2n k -1 12n k 2(C) lim f .(D) lim f .n k =1【答案】B. 2n nx0 k =1 2n n【 解 析 】 由 定 积 分 的 定 义 知 , 将 (0,1)分 成 n 份 , 取 中 间 点 的 函 数 值 , 则1n 2k -1 10 f (x)dx = lim S f 2n n , 即选 B.n k =1(5) 二次型 f (x , x , x ) = (x + x )2 + (x + x )2 - (x - x )2 的正惯性指数与负惯性指数依次为123122331(A) 2, 0 .(B)1,1 .(C) 2,1 .(D)1, 2 .【答案】B.【解析】 f (x , x , x ) = (x + x )2 + (x + x )2 - (x - x )2 = 2x 2 + 2x x + 2x x + 2x x12312233121 22 31 3 011 所以 A = 121 ,故特征多项式为 110 l-1| lE - A |= -1-2-1-1-1-1 = (l+1)(l- 3)ll令上式等于零,故特征值为-1, 3 , 0 ,故该二次型的正惯性指数为 1,负惯性指数为 1.故应选 B. 1 1 3 (6)已知a = 0 ,a = 2 ,a = 1 ,记b =a,b =a - kb ,b =a - l b - l b ,1 1 2 1 3 2 11221331 12 2若b1 , b2 , b3 两两正交,则l1 , l2 依次为5 1(A) ,.2 25 1-(B) ,. 2 2(C)5 , - 1 .22(D)- 5 , - 1 .22【答案】A.【解析】利用斯密特正交化方法知 0 b =a - a2 ,b1 b = 2 ,0221 b1,b1 b =a - a3 ,b1 b - a3 ,b2 b ,33b,b 1b ,b 2故l1= a3 ,b1 = 5 , l2b1,b1 21122= a3 ,b2 = 1 ,故选 A.b2 ,b2 2(7) 设 A, B 为 n 阶实矩阵,下列不成立的是 AO AAB (A) r OAT A = 2r ( A )(B) r OAT = 2r ( A ) ABA AO (C) r OAAT = 2r ( A )【答案】C.(D) r BAAT = 2r ( A ) AO T【解析】(A) r OAT A = r (A) + r (A A) = 2r (A). 故 A 正确.(B) AB 的列向量可由 A 的列线性表示,故 r AAB = r AO = r (A) + r (AT ) = 2r (A). OAT 0AT (C) BA 的列向量不一定能由 A 的列线性表示.(D) BA 的行向量可由 A 的行线性表示, r ABA = r AO = r (A) + r (AT ) = 2r (A). OAT 0AT 本题选 C.(8) 设 A , B 为随机事件,且0 P(B) P( A) ,则 P( A | B) P( A)(C) 若 P( A | B) P( A | B) ,则 P( A | B) P( A) .(D) 若 P( A | A U B) P( A | A U B) ,则 P( A) P(B) .【答案】D.=P( A( A U B)【解析】 P( A | A U B)P( A U B)P( A)P( A) + P(B) - P( AB)P( A | A U B) = P( A( A U B) =P( A U B)P( AB) =P( A U B)P(B) -P( AB)P( A) + P(B) - P( AB)因为 P( A | A U B) P( A | A U B) ,固有 P( A) P(B) - P( AB) ,故正确答案为 D.1 122(9) 设 ( X ,Y ), ( X,Y ),L, (X,Y ) 为来自总体 N (m,m;s2 ,s2 ;r) 的简单随机样本, 令nn12121 n 1 nq= m1 - m2 , X = n X i ,Y = n Yi ,q= X - Y , 则i=1i=1s2 +s2n(A) q 是q的无偏估计, D (q) = 12( ) 12s2 +s2(B) q不是q的无偏估计, D q =n( ) 121 2s2 +s2 - 2rss(C) q是q的无偏估计, D q =n( ) 121 2s2 +s2 - 2rss(D) q不是q的无偏估计, D q =n【答案】C.【解析】因为 X ,Y 是二维正态分布,所以 X 与Y 也服从二维正态分布,则 X - Y 也服从二维正态分布,即 E(q) = E( X - Y ) = E( X ) - E(Y ) = m1 - m2 =q,qs2 +s 2 - 2rssD( ) = D( X - Y ) = D( X ) + D(Y ) - cov( X ,Y ) = 121 2 ,故正确答案为 C.n(10) 设 X1 , X 2 K, X16 是来自总体 N (m, 4) 的简单随机样本, 考虑假设检验问题:H0 : m 10, H1 : m 10.F ( x) 表示标准正态分布函数,若该检验问题的拒绝域为W = X 11 ,1 16其中 X = X i ,则m= 11.5 时,该检验犯第二类错误的概率为16i=1(A)1- F (0.5)(B)1- F (1)(C)1- F (1.5)【答案】B.【解析】所求概率为 PX 11(D) 1- F (2)X : N (11.5, 1) ,4 PX 11 = P X -11.5 11-11.5 = 1- F(1)11 故本题选 B.22二、填空题(本题共 6 小题,每小题 5 分,共 30 分.请将答案写在答题纸指定位置上.)+(11)0p【答案】4+【解析】
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号