资源预览内容
第1页 / 共21页
第2页 / 共21页
第3页 / 共21页
第4页 / 共21页
第5页 / 共21页
第6页 / 共21页
第7页 / 共21页
第8页 / 共21页
第9页 / 共21页
第10页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2022-2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1DEF和ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若DEF的面积是2,则ABC的面积是( ) A2B4C6D82若点在反比例函数上,则的值是( )ABCD3若,则代数式的值( )A-1B3C-1或3D1或-34点P(-6,1)在双曲线上,则k的值为( )A-6B6CD5如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,点C是AB的中点,ECD绕点C按顺时针旋转,且ECD=45,ECD的一边CE交y轴于点F,开始时另一边CD经过点O,点G坐标为(-2,0),当ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径长为( )ABCD6已知抛物线具有如下性质:抛物线上任意一点到定点的距离与到轴的距离相等.如图点的坐标为 , 是抛物线上一动点,则周长的最小值是( )ABCD7如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若D110,则AOC的度数为()A130B135C140D1458掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是( )A0BCD19在 中,则 的值是( )ABCD10 “学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()ABCD11下列各式中,均不为,和成反比例关系的是( )ABCD12小明同学以正六边形三个不相邻的顶点为圆心,边长为半径,向外作三段圆弧,设计了如图所示的图案,已知正六边形的边长为1,则该图案外围轮廓的周长为( )ABCD二、填空题(每题4分,共24分)13已知,是方程的两实数根,则_14若点C是线段AB的黄金分割点且ACBC,则AC_AB(用含无理数式子表示)15将抛物线向左平移2个单位后所得到的抛物线为 _16将抛物线先向右平移个单位,再向下平移个单位,所得到的抛物线的函数解析式是_17如图,矩形的顶点,在反比例函数的图象上,若点的坐标为,轴,则点的坐标为_18如图,在平面直角坐标系xOy中,点A在函数y(x0)的图象上,ACx轴于点C,连接OA,则OAC面积为_三、解答题(共78分)19(8分)空间任意选定一点,以点为端点,作三条互相垂直的射线,这三条互相垂直的射线分别称作轴、轴、轴,统称为坐标轴,它们的方向分别为(水平向前),(水平向右),(竖直向上)方向,这样的坐标系称为空间直角坐标系将相邻三个面的面积记为,且的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体所在的面与轴垂直,所在的面与轴垂直,所在的面与轴垂直,如图1所示若将轴方向表示的量称为几何体码放的排数,轴方向表示的量称为几何体码放的列数,二轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了排列层,用有序数组记作,如图3的几何体码放了排列层,用有序数组记作这样我们就可用每一个有序数组表示一种几何体的码放方式 (1)有序数组所对应的码放的几何体是_;ABCD(2)图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(_,_,_),组成这个几何体的单位长方体的个数为_个(3)为了进一步探究有序数组的几何体的表面积公式,某同学针对若干个单位长方体进行码放,制作了下列表格:几何体有序数组单位长方体的个数表面上面积为S1的个数表面上面积为S2的个数表面上面积为S3的个数表面积根据以上规律,请直接写出有序数组的几何体表面积的计算公式;(用,表示)(4)当,时,对由个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(_,_, _),此时求出的这个几何体表面积的大小为_(缝隙不计)20(8分)如图,ABC中,点E在BC边上,AEAB,将线段AC绕A点逆时针旋转到AF的位置,使得CAFBAE,连接EF,EF与AC交于点G求证:EFBC21(8分)如图,ABC是等边三角形,点D,E分别在BC,AC上,且BDCE,AD与BE相交于点F,(1)证明:ABDBCE;(2)证明:ABEFAE;(3)若AF7,DF1,求BD的长22(10分)如图,O是ABC的外接圆,AB是直径,ODAC,垂足为D点,直线OD与O相交于E,F两点,P是O外一点,P在直线OD上,连接PA,PB,PC,且满足PCAABC(1)求证:PAPC;(2)求证:PA是O的切线;(3)若BC8,求DE的长23(10分)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图)24(10分) (1)解方程: ;(2)计算: 25(12分)如图,将ABCD的边AB延长至点E,使BE=AB,连接DE、EC、BD、DE交BC于点O(1)求证:ABDBEC;(2)若BOD=2A,求证:四边形BECD是矩形26如图,AN是O的直径,四边形ABMN是矩形,与圆相交于点E,AB15,D是O上的点,DCBM,与BM交于点C,O的半径为R1(1)求BE的长(2)若BC15,求的长参考答案一、选择题(每题4分,共48分)1、D【解析】先根据三角形中位线的性质得到DE=AB,从而得到相似比,再利用位似的性质得到DEFABC,然后根据相似三角形的面积比是相似比的平方求解即可【详解】点D,E分别是OA,OB的中点,DE=AB,DEF和ABC是位似图形,点O是位似中心,DEFABC,=,ABC的面积=24=8故选D【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心2、C【分析】将点(-2,-6)代入,即可计算出k的值【详解】点(-2,-6)在反比例函数上,k=(-2)(-6)=12,故选:C.【点睛】本题考查了待定系数法求反比例函数解析式,明确函数图象上点的坐标符合函数解析式是解题关键3、B【分析】利用换元法解方程即可.【详解】设=x,原方程变为:,解得x=3或-1,0,故选B.【点睛】本题考查了用换元法解一元二次方程,设=x,把原方程转化为是解题的关键.4、A【分析】根据反比例函数图象上点的坐标特征可直接得到答案【详解】解:点P()在双曲线上,;故选:A.【点睛】此题主要考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k5、A【解析】先确定点B、A、C的坐标,当点G在点O时,点F的坐标为(0,2),此时点F、B、C三点的圆心为BC的中点,坐标为(1,3);当直线OD过点G时,利用相似求出点F的坐标,根据圆心在弦的垂直平分线上确定圆心在线段BC的垂直平分线上,故纵坐标为,利用两点间的距离公式求得圆心的坐标,由此可求圆心所走的路径的长度.【详解】直线与x轴交于点A,与y轴交于点B,B(0,4),A(4,0),点C是AB的中点,C(2,2),当点G在点O时,点F的坐标为(0,2),此时点F、B、C三点的圆心为BC的中点,坐标为(1,3);当直线OD过点G时,如图,连接CN,OC,则CN=ON=2,OC=,G(-2,0),直线GC的解析式为:,直线GC与y轴交点M(0,1),过点M作MHOC,MOH=45,MH=OH=,CH=OC-OH=,NCO=FCG=45,FCN=MCH,又FNC=MHC,FNCMHC,即,得FN=,F(,0),此时过点F、B、C三点的圆心在BF的垂直平分线上,设圆心坐标为(x,),则,解得,当ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径为线段,即由BC的中点到点(,),所经过的路径长=.故选:A.【点睛】此题是一道综合题,考查一次函数的性质,待定系数法求函数的解析式,相似三角形的判定及性质定理,两点间的距离公式,综合性比较强,做题时需时时变换思想来解题.6、C【分析】作过作轴于点,过点作轴于点,交抛物线于点,由结合,结合点到直线之间垂线段最短及MF为定值,即可得出当点P运动到点P时,PMF周长取最小值,再由点、的坐标即可得出、的长度,进而得出周长的最小值【详解】解:作过作轴于点,由题意可知:,周长=,又点到直线之间垂线段最短,当、三点共线时 最小,此时周长取最小值,过点作轴于点 ,交抛物线于点,此时周长最小值,、,周长的最小值故选:【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征以及点到直线的距离,根据点到直线之间垂线段最短找出PMF周长的取最小值时点P的位置是解题的关键7、C【分析】根据“圆内接四边形的对角互补”,由D可以求得B,再由圆周角定理可以求得AOC的度数【详解】解:D110,B18011070,AOC2B140,故选C【点睛】本题考查圆周角定理及圆内接四边形的性质,熟练掌握有关定理和性质的应用是解题关键8、B
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号