资源预览内容
第1页 / 共8页
第2页 / 共8页
第3页 / 共8页
第4页 / 共8页
第5页 / 共8页
第6页 / 共8页
第7页 / 共8页
第8页 / 共8页
亲,该文档总共8页全部预览完了,如果喜欢就下载吧!
资源描述
初三( )数学试卷一 姓名 学号 (制卷:陈晓娟)一、选择题(本大题共10小题,每小题3分,共30分)1、下列计算正确的是()ABCD2、(2007浙江嘉兴)下列图形中,中心对称图形的是() (A)(B)(C) (D)3、若关于z的一元二次方程没有实数根,则实数m的取值范围是() Am-1 Cml Dm-14、如图,AB是O的直径,若BAC=350,则么ADC=【 】 A.350 B.550 C.700 D.1100第4题 第8题5、用配方法解方程,下列配方正确的是( )AABCD6、在同一坐标平面内,图象不可能由函数的图象通过平移变换、轴对称变换得到的函数是()D7、随机掷两枚硬币,落地后全部正面朝上的概率是( )DABCD8、如图,CD是E的弦,直径AB过CD的中点M,若BEC=40,则ABD=( ) A40 B60 C70 D809、 如图9,在106的网格图中(每个小正方形的边长均为1个单位长),A的半径为1,B的半径为2,要使A与静止的B内切,那么A由图示位置需向右平移( )个单位长A4 B6 C4或6 D2或4或6或810、如图是二次函数yax2bxc图象的一部分,图象过点A(3,0),对称轴为x1给出四个结论:b24ac;2ab=0;abc=0;5ab其中正确结论是()B(A)(B)(C)(D)OABCD 第10题 第14题 第16题二、填空题(本大题共有8小题,每小题3分,共24分)11、 要使二次根式有意义,应满足的条件是_12、方程的解是 13、随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为_.14、如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,ABD绕点A旋转后得到ACE,则CE的长度为 _15、已知点A(2,y1),B(4,y2)在二次函数y=3x2的图象上,则y1 y2.16、如图,点O为优 弧ACB所在圆的圆心,AOC=108,点D在AB的延长线上, BD=BC, 则D的度数为_。 17、将抛物线yax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,1),那么移动后的抛物线的关系式为 _.18、 如果点P在坐标轴上,以点P为圆心,为半径的圆与直线:相切,则点P的坐标是 三、解答题(本大题共有10小题,共96分)19( 8分)计算:-6 20( 8分)解方程:(1) (2) xyO21(8分)如图,在平面直角坐标系中,O为原点,每个小方格的边长为1个单位长度在第一象限内有横、纵坐标均为整数的A、B两点,且OA= OB=(1)写出A、B两点的坐标; (2)画出线段AB绕点O旋转一周所形成的图形,并求其面积(结果保留)22、(8分)为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)23、( 8分)九年级1班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选(1)男生当选班长的概率是;(2)请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率24、(8分)如图:(1)求该抛物线的解析式;(2)根据图象回答:当x为何范围时,该函数值大于0。25、(10分)如图,已知直线交O于A、B两点,AE是O的直径,点C为O上一点,且AC平分PAE,过C作,垂足为D.(1) 求证:CD为O的切线;(2) 若DC+DA=6,O的直径为10,求AB的长度. 26、(12分)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地上市时,外商李经理按市场价格10元/千克在该州收购了2000千克香菇存放入冷库中据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额为元,试写出与之间的函数关系式(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润销售总金额收购成本各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?27、(12分)如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图3至图6中统一用F表示) (图1) (图2) (图3)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决。(1)将图3中的ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;(2)将图3中的ABF绕点F顺时针方向旋转30到图5的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图3中的ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AHDH (图4) (图5) (图6)28、(14分)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为 A (1,0),B (1,5),D (4,0)(1)求c,b (用含t的代数式表示):(2)当4t5时,设抛物线分别与线段AB,CD交于点M,N在点P的运动过程中,你认为AMP的大小是否会变化?若变化,说明理由;若不变,求出AMP的值;求MPN的面积S与t的函数关系式,并求t为何值时,;(3)在矩形ABCD的内部(不含边界),把横、纵 坐标都是整数的点称为“好点”若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围补充:综合题1、如图,矩形ABCO是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕B点逆时针旋转得到的O点在x轴的正半轴上,B点的坐标为(1,3)(1)如果二次函数yax2bxc(a0)的图象经过O、O两点且图象顶点M的纵坐标为1求这个二次函数的解析式;(2)在(1)中求出的二次函数图象对称轴的右支上是否存在点P,使得POM为直角三角形?若存在,请求出P点的坐标和POM的面积;若不存在,请说明理由;(3)求边CO所在直线的解析式2、如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.(1)求m的值及该抛物线对应的函数关系式;(2)求证: CB=CE ; D是BE的中点;ABCODExyx=2(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE,若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号