资源预览内容
第1页 / 共16页
第2页 / 共16页
第3页 / 共16页
第4页 / 共16页
第5页 / 共16页
第6页 / 共16页
第7页 / 共16页
第8页 / 共16页
第9页 / 共16页
第10页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
北师大版2019-2020学年数学精品资料第二章2.5一、选择题1平面的一个法向量为n1(4,3,0),平面的一个法向量为n2(0,3,4),则平面与平面夹角的余弦值为()ABCD以上都不对答案B解析cosn1,n2,平面与平面夹角的余弦值为.2如图,长方体ABCDA1B1C1D1中,ABAA12,AD1,E为CC1的中点,则A1E与BD所成角的余弦值为()ABCD答案B解析分别以DA、DC、DD1为x、y、z轴建立空间直角坐标系,则A1(1,0,2),E(0,2,1),B(1,2,0),D(0,0,0),(1,2,1),(1,2,0)|cos,|.3已知E,F分别是棱长为1的正方体ABCDA1B1C1D1的棱BC,CC1的中点,则截面AEFD1与底面ABCD所成二面角的正弦值是()ABCD答案C解析以D为坐标原点,以DA、DC、DD1分别为x轴、y轴、z轴建立空间直角坐标系,如图,则A(1,0,0),E(,1,0),D1(0,0,1),(1,0,1),(,1,0)设平面AEFD1的法向量为n(x,y,z)则x2yz.取y1,则n(2,1,2),而平面ABCD的一个法向量为u(0,0,1),cosn,u,sinn,u.4如图,四面体PABC中,PC平面ABC,ABBCCAPC,那么二面角BAPC的余弦值为()ABCD答案C解析如图,作BDAP于D,作CEAP于E,与的夹角恰是二面角的平面角,设AB1,则易得CE,EP,PAPB,AB1,可以求得BD,ED.,222.cos,.即cos,.另解:如图建立空间直角坐标系,不妨设ABBCCDPC2.则A(2,0,0),C(0,0,0),B(1,0),P(0,0,2)设平面PAB的法向量n0,即不妨取n(3,3),又平面PAC的法向理为n0(0,1,0)cos .5直三棱柱A1B1C1ABC中,ACB90,D1,E1分别为A1B1、A1C1的中点,若BCCACC1,则BD1与AE1所成角的余弦值为()ABCD答案C解析 如图所示,取直线CA、CB、CC1分别为x轴、y轴、z轴建立直角坐标系,设|a,则A(a,0,0),B(0,a,0),E1(,0,a),D1(,a)(,0,a),(,a)a2,|a,|Acos,故选C6在正方体ABCDA1B1C1D1中,若F、G分别是棱AB、CC1的中点,则直线FG与平面A1ACC1所成角的正弦值等于()ABCD答案D解析解法一:过F作BD的平行线交AC于M,则MGF即为所求设正方体棱长为1,MF,GF,sinMGF.解法二:分别以AB、AD、AA1为x轴、y轴、z轴建立空间直角坐标系,设正方体棱长为1,则易知平面ACC1A1的一个法向量为n(1,1,0),F(,0,0),G(1,1,),设直线FG与平面A1ACC1所成角,则sin|cosn,|.二、填空题7如图所示,在直三棱柱ABCA1B1C1中,ACB90,AA12,ACBC1,则异面直线A1B与AC夹角的余弦值为_答案解析根据题意,以点C为坐标原点,分别以CA、CB、CC1所在直线为x轴、y轴、z轴,建立空间直角坐标系,则C(0,0,0),A(1,0,0),B(0,1,0),A1(1,0,2)于是得(1,1,2),(1,0,0),所以cos,所以异面直线A1B与AC夹角的余弦值为.8已知正三棱柱ABCA1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为_答案解析不妨设正三棱柱ABCA1B1C1的棱长为2,建立如右图所示空间直角坐标系则C(0,0,0),A(,1,0),B1(,1,2),D,则,(,1,2),设平面B1DC的法向量为n(x,y,1),由,解得n(,1,1)又,sin|cos,n|.三、解答题9(2014辽宁理)如图,ABC和BCD所在平面互相垂直,且ABBCBD2,ABCDBC120、E,F分别为AC、DC的中点(1)求证:EFBC;(2)求二面角EBFC的正弦值解析(1)方法一:过E作EOBC,垂足为O,连接OF,由ABCDBC可证出EOCFOC,图1所以EOCFOC,即FOBC又EOBC,因此BC平面EFO.又EF平面EFO,所以EFBC方法二:由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示空间直角坐标系,易得B(0,0,0),A(0,1,),D(,1,0),C(0,2,0),因而E(0,),F(,0),所以(,0,),(0,2,0),因此0,从而,所以EFBC(2)方法一:在图1中过O作OGBF,垂足为G连EG,由平面ABC平面BDC,从而EO平面BDC,又OGBF,由三垂线定理知EGBF.因此EGO为二面角EBFC的平面角,在EOC中,EOECBCcos30,由BGOBFC知OGFC.因此tanEGO2,从而sinEGO.即二面角的正弦值为.方法二:在图(2)中平面BFC的一个法向量为n1(0,0,1),设平面BEF的法向量n2(x,y,z)图2又(,0),(0,)由得其中一个n2(1,1)设二面角EBFC的大小为,由题意知为锐角,则cos|cos|.因此sin.即所求二面角正弦值为.10(2014陕西理)四面体ABCD及其三视图如图所示,过棱AB的中点E作平行于AD、BC的平面分别交四面体的棱BD、DC、CA于点F、G、H.(1)证明:四边形EFGH是矩形;(2)求直线AB与平面EFGH夹角的正弦值解析(1)由该四面体的三视图可知,BDDC,BDAD,ADDC,BDDC2,AD1,由题设,BC平面EFGH,平面EFGH平面ABCEH,BCFG,BCEH,FGEG.同理EFAD,HGAD,EFHG,四边形EFGH是平行四边形又ADDC,ADBDAD平面BDC,ADBC,EFFG,四边形EFGH是矩形(2)解法一:如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),(0,0,1),(2,2,0),(2,0,1)设平面EFGH的法向量n(x,y,z),EFAD,FGBC,n0,n0,得取n(1,1,0),sin|cos,n|.解法二:如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),E是AB的中点,F,G分别为BD,DC的中点,得E(1,0,),F(1,0,0),G(0,1,0)(0,0,),(1,1,0),(2,0,1)设平面EFGH的法向量n(x,y,z),则n0,n0,得取n(1,1,0),sin|cos,n|.一、选择题1若平面的一个法向量n(4,1,1),直线l的方向向量a(2,3,3),则l与夹角的余弦值为()ABCD答案D解析cosa,n.l与夹角的余弦值为.2在三棱柱ABCA1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是()A30B45C60D90答案C解析如图,取BC的中点E,连结DE、AE、AD,依题意知三棱柱为正三棱柱,易得AE平面BB1C1C,故ADE为AD与平面BB1C1C所成的角设各棱长为1,则AE,DE,tanADE,ADE60,故选C3在长方体ABCDA1B1C1D1中,M、N分别是棱BB1、B1C1的中点,若CMN90,则异面直线AD1与DM的夹角为()A30B45C60D90答案D解析如图,连结DM,BC1,则MC为DM在平面B1C内的投影又因为CMMN,所以DMMN.因为MNBC1AD1,所以DMAD1,即AD1与DM的夹角为90.4如图,在棱长都相等的四面体ABCD中,E,F分别为棱AD、BC的中点,连接AF,CE,则直线AF与CE所成的角的余弦值为()ABCD答案A解析设该四面体的棱长为1,则|,|1.所以()()()(2)(22)(12).所以cos,.二、填空题5如图,在正三棱柱ABCA1B1C1中,已知AB1,点D在棱BB1上,且BD1,则AD与平面AA1C1C所成角的正弦值为_答案解析解法一:取AC、A1C1的中点M、M1,连结MM1、BM.过D作DNBM,则容易证明DN平面AA1C1C连结AN,则DAN就是AD与平面AA1C1C所成的角在RtDAN中,sinDAN.解法二:取AC、A1C1中点O、E,则OBAC,OE平面ABC,以O为原点OA、OB、OE为x轴、y轴、z轴建立空间直角坐标系,在正三角形ABC中,BMAB,A,B,D,又平面AA1C1C的法向量为e(0,1,0),设直线AD与平面AA1C1C所成角为,则sin|cos,e|.解法三:设a,b,c,由条件知ab,ac0,bc0,又cb,平面AA1C1C的法向量(ab)设直线AD与平面AA1C1C成角为,则sin|cos,|,(cb)(ab)acabbc|b|2.|2(cb)2|c|2|b|22bc2,|,|2(ab)2(|a|2|b|22ab),|,sin.6在正方体ABCDA1B1C1D1中,则A1B与平面A1B1CD所成角的大小为_答案
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号