资源预览内容
第1页 / 共8页
第2页 / 共8页
第3页 / 共8页
第4页 / 共8页
第5页 / 共8页
第6页 / 共8页
第7页 / 共8页
第8页 / 共8页
亲,该文档总共8页全部预览完了,如果喜欢就下载吧!
资源描述
3.1.3 二倍角的正弦、余弦、正切公式整体设计教学分析 “二倍角的正弦、余弦、正切公式”是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具、通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律、通过推导还让学生加深理解了高中数学由一般到特殊的化归思想、因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义. 本节课通过教师提出问题、设置情境及对和角公式中、关系的特殊情形=时的简化,让学生在探究中既感到自然、易于接受,还可清晰知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师要引导学生自己去做,因为,数学课程标准提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验”. 在实际教学过程中不要过多地补充一些高技巧、高难度的练习,更不要再补充一些较为复杂的积化和差或和差化积的恒等变换,否则就违背了新课标在这一章的编写意图和新课改精神.三维目标1.通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.2.通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.使学生进一步掌握联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神.重点难点教学重点:二倍角公式推导及其应用.教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式.课时安排1课时教学过程导入新课 思路1.(复习导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后让学生默写这六个公式.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?今天,我们进一步探讨一下二倍角的问题,请同学们思考一下,应解决哪些问题呢?由此展开新课. 思路2.(问题导入)出示问题,让学生计算,若sin=,(,),求sin2,cos2的值.学生会很容易看出:sin2=sin(+)=sincos+cossin=2sincos的,以此展开新课,并由此展开联想推出其他公式.推进新课新知探究提出问题还记得和角的正弦、余弦、正切公式吗?(请学生默写出来,并由一名学生到黑板默写)你写的这三个公式中角、会有特殊关系=吗?此时公式变成什么形式?在得到的C2公式中,还有其他表示形式吗?细心观察二倍角公式结构,有什么特征呢?能看出公式中角的含义吗?思考过公式成立的条件吗?让学生填空:老师随机给出等号一边括号内的角,学生回答等号另一边括号内的角,稍后两人为一组,做填数游戏:sin( )=2sin( )cos( ),cos( )=cos2( )-sin2( ).思考过公式的逆用吗?想一想C2还有哪些变形?请思考以下问题:sin2=2sin吗?cos2=2cos吗?tan2=2tan? 活动:问题,学生默写完后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的,,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到,会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入问题,然后找一名学生到黑板进行简化,其他学生在自己的座位上简化、教师再与学生一起集体订正黑板的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3或3等角的探究附设类比联想的源泉.sin(+)=sincos+cossinsin2=2sincos(S2);cos(+)=coscos-sinsincos2=cos2-sin2(C2);tan(+)= 这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,并指导学生阅读教科书,确切明了二倍角的含义,以后的“倍角”专指“二倍角”、教师适时提出问题,点拨学生结合sin2+cos2=1思考,因此二倍角的余弦公式又可表示为以下右表中的公式. 这时教师点出,这些公式都叫做倍角公式(用多媒体演示).倍角公式给出了的三角函数与2的三角函数之间的关系. 问题,教师指导学生,这组公式用途很广,并与学生一起观察公式的特征与记忆,首先公式左边角是右边角的2倍;左边是2的三角函数的一次式,右边是的三角函数的二次式,即左到右升幂缩角,右到左降幂扩角、二倍角的正弦是单项式,余弦是多项式,正切是分式. 问题,因为还没有应用,对公式中的含义学生可能还理解不到位,教师要引导学生观察思考并初步感性认识到:()这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;()通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;()二倍角公式是两角和的三角函数公式的特殊情况;()公式(S2),(C2)中的角没有限制,都是R.但公式(T2)需在k+和k+(kZ)时才成立,这一条件限制要引起学生的注意.但是当=k+,kZ时,虽然tan不存在,此时不能用此公式,但tan2是存在的,故可改用诱导公式. 问题,填空是为了让学生明了二倍角的相对性,即二倍角公式不仅限于2是的二倍的形式,其他如4是2的二倍,是的二倍,3是的二倍,是的二倍,-是-的二倍等,所有这些都可以应用二倍角公式.例如:sin=2sincos,cos=cos2-sin2等等. 问题,本组公式的灵活运用还在于它的逆用以及它的变形用,这点教师更要提醒学生引起足够的注意.如:sin3cos3=sin6,4sincos=2(2sincos)=2sin,=tan80,cos22-sin22=cos4,tan2=2tan(1-tan2)等等. 问题,一般情况下:sin22sin,cos22cos,tan22tan.若sin2=2sin,则2sincos=2sin,即sin=0或cos=1,此时=k(kZ).若cos2=2cos,则2cos2-2cos-1=0,即cos=(cos=舍去).若tan2=2tan,则=2tan,tan=0,即=k(kZ).解答:(略)应用示例思路1例1 已知sin2=,求sin4,cos4,tan4的值. 活动:教师引导学生分析题目中角的关系,观察所给条件与结论的结构,注意二倍角公式的选用,领悟“倍角”是相对的这一换元思想.让学生体会“倍”的深刻含义,它是描述两个数量之间关系的.本题中的已知条件给出了2的正弦值.由于4是2的二倍角,因此可以考虑用倍角公式.本例是直接应用二倍角公式解题,目的是为了让学生初步熟悉二倍角的应用,理解二倍角的相对性,教师大胆放手,可让学生自己独立探究完成.解:由,得2.又sin2=,cos2=.于是sin4=sin2(2)=2sin2cos2=2()=;cos4=cos2(2)=1-2sin22=1-2()2=;tan4=(-)=. 点评:学生由问题中条件与结论的结构不难想象出解法,但要提醒学生注意,在解题时注意优化问题的解答过程,使问题的解答简捷、巧妙、规范,并达到熟练掌握的程度.本节公式的基本应用是高考的热点.变式训练1.不查表,求值:sin15+cos15.解:原式= 点评:本题在两角和与差的学习中已经解决过,现用二倍角公式给出另外的解法,让学生体会它们之间的联系,体会数学变化的魅力.2.(2007年高考海南卷,9) 若,则cos+sin的值为( )A. B. C. D.答案:C3.(2007年高考重庆卷,6) 下列各式中,值为的是( )A.2sin15-cos15 B.cos215-sin215C.2sin215-1 D.sin215+cos215答案:B例2 证明=tan. 活动:先让学生思考一会,鼓励学生充分发挥聪明才智,战胜它,并力争一题多解.教师可点拨学生想一想,到现在为止,所学的证明三角恒等式的方法大致有几种:从复杂一端化向简单一端;两边化简,中间碰头;化切为弦;还可以利用分析综合法解决,有时几种方法会同时使用等.对找不到思考方向的学生,教师点出:可否再添加一种,化倍角为单角?这可否成为证明三角恒等式的一种方法?再适时引导,前面学习同角三角函数的基本关系时曾用到“1”的代换,对“1”的妙用大家深有体会,这里可否在“1”上做做文章? 待学生探究解决方法后,可找几个学生到黑板书写解答过程,以便对照点评及给学生以启发.点评时对能够善于运用所学的新知识解决问题的学生给予赞扬;对暂时找不到思路的学生给予点拨、鼓励.强调“1”的妙用很妙,妙在它在三角恒等式中一旦出现,在证明过程中就会起到至关重要的作用,在今后的证题中,万万不要忽视它.证明:方法一:左=tan=右.所以,原式成立.方法二:左=tan=右.方法三:左=tan=右. 点评:以上几种方法大致遵循以下规律:首先从复杂端化向简单端;第二,化倍角为单角,这是我们今天刚刚学习的;第三,证题中注意对数字的处理,尤其“1”的代换的妙用,请同学们在探究中仔细体会这点.在这道题中通常用的几种方法都用到了,不论用哪一种方法,都要思路清晰,书写规范才是.思路2例1 求sin10sin30sin50sin70的值. 活动:本例是一道灵活应用二倍角公式的经典例题,有一定难度,但也是训练学生思维能力的一道好题.本题需要公式的逆用,逆用公式的先决条件是认识公式的本质,要善于把表象的东西拿开,正确捕捉公式的本质属性,以便合理运用公式.教学中教师可让学生充分进行讨论探究,不要轻易告诉学生解法,可适时点拨学生需要做怎样的变化,又需怎样应用二倍角公式.并点拨学生结合诱导公式思考.学生经过探索发现,如果用诱导公式把10,30,50,70正弦的积化为20,40,60,80余弦的积,其中60是特殊角,很容易发现40是20的2倍,80是40的2倍,故可考虑逆用二倍角公式.解:原式=cos8
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号