资源预览内容
第1页 / 共28页
第2页 / 共28页
第3页 / 共28页
第4页 / 共28页
第5页 / 共28页
第6页 / 共28页
第7页 / 共28页
第8页 / 共28页
第9页 / 共28页
第10页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
轴向拉压1. 等截面直杆CD位于两块夹板之间,如图示。杆件与夹板间的摩擦力与杆件自重保持平衡。设杆CD两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q,杆CD的横截面面积为A,质量密度为,试问下列结论中哪一个是正确的?(A) ;(B) 杆内最大轴力;(C) 杆内各横截面上的轴力;(D) 杆内各横截面上的轴力。2. 低碳钢试样拉伸时,横截面上的应力公式适用于以下哪一种情况?(A) 只适用于; (B) 只适用于;(C) 只适用于; (D) 在试样拉断前都适用。3. 在A和B两点连接绳索ACB,绳索上悬挂物重P,如图示。点A和点B的距离保持不变,绳索的许用拉应力为。试问:当角取何值时,绳索的用料最省?(A) ; (B) ;(C) ; (D) 。4. 桁架如图示,载荷F可在横梁(刚性杆)DE上自由移动。杆1和杆2的横截面面积均为A,许用应力均为(拉和压相同)。求载荷F的许用值。以下四种答案中哪一种是正确的?(A) ; (B) ;(C) ; (D) 。5. 设受力在弹性范围内,问空心圆杆受轴向拉伸时,外径与壁厚的下列四种变形关系中哪一种是正确的?(A) 外径和壁厚都增大; (B) 外径和壁厚都减小;(C) 外径减小,壁厚增大; (D) 外径增大,壁厚减小。6. 三杆结构如图所示。今欲使杆3的轴力减小,问应采取以下哪一种措施?(A) 加大杆3的横截面面积;(B) 减小杆3的横截面面积;(C) 三杆的横截面面积一起加大;(D) 增大角。7. 图示超静定结构中,梁AB为刚性梁。设和分别表示杆1的伸长和杆2的缩短,试问两斜杆间的变形协调条件的正确答案是下列四种答案中的哪一种?(A) ;(B) ;(C) ;(D) 。8. 图示结构,AC为刚性杆,杆1和杆2的拉压刚度相等。当杆1的温度升高时,两杆的轴力变化可能有以下四种情况,问哪一种正确?(A) 两杆轴力均减小;(B) 两杆轴力均增大;(C) 杆1轴力减小,杆2轴力增大;(D) 杆1轴力增大,杆2轴力减小。9. 结构由于温度变化,则:(A) 静定结构中将引起应力,超静定结构中也将引起应力;(B) 静定结构中将引起变形,超静定结构中将引起应力和变形;(C) 无论静定结构或超静定结构,都将引起应力和变形;(D) 静定结构中将引起应力和变形,超静定结构中将引起应力。10. 单位宽度的薄壁圆环受力如图所示,p为径向压强,其截面n-n上的内力的四种答案中哪一种是正确的?(A) ; (B) ;(C) ; (D) 。11. 图示受力结构中,若杆1和杆2的拉压刚度EA相同,则节点A的铅垂位移 ,水平位移 。12. 一轴向拉杆,横截面为(ab)的矩形,受轴向载荷作用变形后截面长边和短边的比值为 。另一轴向拉杆,横截面是长半轴和短半轴分别为a和b的椭圆形,受轴向载荷作用变形后横截面的形状为 。13. 一长为l,横截面面积为A的等截面直杆,质量密度为,弹性模量为E,该杆铅垂悬挂时由自重引起的最大应力 ,杆的总伸长 。14. 图示杆1和杆2的材料和长度都相同,但横截面面积。若两杆温度都下降,则两杆轴力之间的关系是 ,正应力之间的关系是 。(填入符号,)题1-14答案:1. D 2. D 3. C 4. B 5. B 6. B 7. C 8. C 9. B 10. B11. 12. ;椭圆形 13. 14. ,=15. 试证明受轴向拉伸的圆截面杆,其横截面沿圆周方向的线应变等于直径的相对改变量。证: 证毕。16. 如图所示,一实心圆杆1在其外表面紧套空心圆管2。设杆的拉压刚度分别为和。此组合杆承受轴向拉力F,试求其长度的改变量。(假设圆杆和圆管之间不发生相对滑动)解: 由平衡条件 (1)变形协调条件 (2)由(1)、(2)得 17. 设有一实心钢杆,在其外表面紧套一铜管。材料的弹性模量和线膨胀系数分别为,和,且。两者的横截面面积均为A。如果两者紧套的程度不会发生相互滑动,试证明当组合管升温后,其长度改变为。证:由平衡条件 (1)变形协调条件 (2)由(1)、(2)得18. q为均布载荷的集度,试作图示杆的轴力图。解:19. 如图所示,一半圆拱由刚性块AB和BC及拉杆AC组成,受的均布载荷作用。若半圆拱半径,拉杆的许用应力,试设计拉杆的直径d。解:由整体平衡 对拱BC,:拉杆的直径 d20. 图示为胶合而成的等截面轴向拉杆,杆的强度由胶缝控制,已知胶的许用切应力为许用正力的1/2。问为何值时,胶缝处的切应力和正应力同时达到各自的许用应力。解:胶缝截面与横截面的夹角21. 图示防水闸门用一排支杆支撑(图中只画出1根),各杆直径为,许用应力,设闸门受的水压力与水深成正比,水的质量密度=,若不考虑支杆的稳定问题,试求支杆间的最大距离。(取)解:设支杆间的最大距离为x,闸门底部A处水压力的集度为。闸门AB的受力如图,得:22. 图示结构中AC为刚性梁,BD为斜撑杆,载荷F可沿梁AC水平移动。试问:为使斜杆的重量最小,斜撑杆与梁之间的夹角应取何值?解:载荷F移至C处时,杆BD的受力最大,如图。杆BD的体积 当时,V最小即重量最轻,故23. 图示结构,BC为刚性梁,杆1和杆2的横截面面积均为A,它们的许用应力分别为和,且。载荷F可沿梁BC移动,其移动范围为0xl。试求:(1) 从强度方面考虑,当x为何值时,许用载荷为最大,其最大值F为多少?(2) 该结构的许用载荷多大?解:(1) 杆BC受力如图=,=(2) F在C处时最不利 所以结构的许用载荷 24. 图示结构,杆1和杆2的横截面面积为A,材料的弹性模量为E,其拉伸许用应力为,压缩许用应力为,且,载荷F可以在刚性梁BCD上移动,若不考虑杆的失稳,试求:(1) 结构的许用载荷。(2) 当x为何值时,F的许用值最大,且最大许用值为多少?解:(1) F在B处时最危险,梁受力如图(1)(压) , (拉) 结构的许用载荷 (2) F在CD正中间时能取得许用载荷最大值,此时(压)25. 在图示结构中,杆BC和杆BD的材料相同,且受拉和受压时的许用应力相等,已知载荷F,杆BC长l,许用应力。为使结构的用料最省,试求夹角的合理值。解:,=, =, 即 当时,V最小,结构用料最省。26. 如图所示,外径为D,壁厚为,长为l的均质圆管,由弹性模量E,泊松比的材料制成。若在管端的环形横截面上有集度为q的均布力作用,试求受力前后圆管的长度,厚度和外径的改变量。解:长度的改变量 厚度的改变量 外径的改变量 27. 正方形截面拉杆,边长为,弹性模量,泊松比。当杆受到轴向拉力作用后,横截面对角线缩短了,试求该杆的轴向拉力F的大小。解:对角线上的线应变则杆的纵向线应变杆的拉力28. 图示圆锥形杆的长度为l,材料的弹性模量为E,质量密度为,试求自重引起的杆的伸长量。解:x处的轴向内力 杆的伸长量29. 设图示直杆材料为低碳钢,弹性模量,杆的横截面面积为,杆长,加轴向拉力,测得伸长。试求卸载后杆的残余变形。解:卸载后随之消失的弹性变形残余变形为30. 图示等直杆,已知载荷F,BC段长l,横截面面积A,弹性模量E,质量密度,考虑自重影响。试求截面B的位移。解:由整体平衡得BC段轴力截面B的位移31. 已知图示结构中三杆的拉压刚度均为EA,设杆AB为刚体,载荷F,杆AB长l。试求点C的铅垂位移和水平位移。解:杆AB受力如图, 因为杆AB作刚性平移,各点位移相同,且,杆2不变形。又沿由A移至。所以 32. 电子秤的传感器是一个空心圆筒,承受轴向拉伸或压缩。已知圆筒外径,壁厚,材料的弹性模量。在称某重物时,测得筒壁的轴向应变,试问该物重多少?解:圆筒横截面上的正应力该物重 33. 图示受力结构,AB为刚性杆,CD为钢制斜拉杆。已知杆CD的横截面面积,弹性模量。载荷,试求:(1) 杆CD的伸长量;(2) 点B的垂直位移。解:杆AB受力如图,34. 如图示,直径的钢制圆杆AB,与刚性折杆BCD在B处铰接。当D处受水平力F作用时,测得杆AB的纵向线应变。已知钢材拉伸时的弹性模量。试求:(1) 力F的大小;(2) 点D的水平位移。解:折杆BCD受力如图(1),(2)35. 如图示等直杆AB在水平面内绕A端作匀速转动,角速度为,设杆件的横截面面积为A,质量密度为。则截面C处的轴力 。答:36. 如图示,两端固定的等直杆AB,已知沿轴向均匀分布的载荷集度为q,杆长为l,拉压刚度为EA,试证明任意一截面的位移,最大的位移。证:由平衡条件得由变形协调条件,得令,即当时,杆的位移最大, 证毕。37. 图示刚性梁AB,在BD两点用钢丝悬挂,钢丝绕进定滑轮G、F,已知钢丝的弹性模量,横截面面积,在C处受到载荷的作用,不计钢丝和滑轮的摩擦,求C点的铅垂位移。解:设钢丝轴力为,杆AB受力如图示。由得 钢丝长,, 由此得 所以 38. 图示杆件两端被固定,在C处沿杆轴线作用载荷F,已知杆横截面面积为A,材料的许用拉应力为,许用压应力为,且,问x为何值时,F的许用值最大,其最大值为多少?解:平衡条件 变形协调条件 得,由得,39. 欲使图示正方形截面受压杆件变形后的体积不发生变化,试求该材料的泊松比值。解:得 上式左端展开后略去二阶以上微量得 则 40. 平面结构中,四杆AC,BD,BC,CD的横截面面积皆为A,材料的弹性模量皆为E,其长度如图示,各节点皆铰接,在点C作用有铅垂向下的载荷F。试求点D的水平位移与铅垂位移。解:点D的铅垂位移和水平位移分别为 , 41. 图示桁架中各杆的拉压刚度为EA,各节点均为铰接,点B作用有垂直向下的力F。试求节点B的位移。解:由点B、A的平衡得,分析点A的位移,可得几何关系点B的水平位移和铅垂位移分别为42. 如图所示,边长为l的正方形桁架,在点D作用垂直向下的力F,各杆的拉压刚度为EA。试求节点C、E、D的铅垂位移。解: (拉), (压)另解:由功能原理得43. 刚性梁AB在C,F两点用钢丝绳悬挂,钢丝绳绕过定滑轮D和E。已知钢丝绳的拉压刚度为EA,试求点A的铅垂位移(不考虑绳与滑轮间的摩擦)。解:由平衡条件得另解:由功能原理 得 44. 图示结构中,ABC及CD为刚性梁,已知,杆1和杆2的直径分别为,两杆的弹性模量均为。试求铰C的铅垂位移。解: (拉), (拉)几何方程 45. 图示结构中,四杆AC,BD,BC,CD材料相同,弹性模量皆为E,线膨胀系数皆为。四根杆的横截
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号