资源预览内容
第1页 / 共19页
第2页 / 共19页
第3页 / 共19页
第4页 / 共19页
第5页 / 共19页
第6页 / 共19页
第7页 / 共19页
第8页 / 共19页
第9页 / 共19页
第10页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
数字化设计与制造技术教学大纲1. 概述(两个学时)1、CAD/CAM的基本含义及其特点(重点)2、CAD/CAM技术发展简介3、CAD/CAM系统的组成及基本类型4、CAD/CAM作业过程5、CAD/CAM系统应具备的基本功能(重点)6、当前CAD/CAM系统常用软件以上六点可参照2000年的讲义。7、CAD/CAM关键技术简介(重点)实体造型、特征技术、参数化变量化方法、曲面造型、工程制图、装配技术、有限元网格剖分方法、产品数据管理、CAM。2. 实体造型(六个学时)1、形体在计算机内的表示表示形体的坐标系几何元素的定义(重点,尤其是定义形体的层次结构)表示形体的线框、表面、实体模型(重点)常用的形体表示方法(重点,尤其是CSG和Brep表示)2、边界表示的数据结构与欧拉操作翼边结构(重点)欧拉操作3、求交算法点与各几何元素的求交算法线与各几何元素的求交算法面与各几何元素的求交算法4、集合运算一维几何元素的集合运算(重点)二维几何元素的集合运算三维几何元素的集合运算5、常用的其他造型方法分数维造型从二维正投影图构造三维形体从二维图象信息够三维形体3. 特征造型(两个学时)3.1. 特征技术产生的背景特征技术是CAD/CAM技术发展中的一个新里程碑,它是在CAD/CAM技术的发展和应用达到一定水平,要求进一步提高生产组织的集成化、自动化程度的历史进程中孕育成长起来的。现代设计制造系统的发展趋势是集成化、智能化,目的是达到高度的自动化。实现上述目标的基础是给系统的各个环节提供能够共享的产品定义。现有的CAD/CAM系统,因不能用一个完整的产品模型来支持各工程应用活动,在设计、制造及检验的各个环节中,使用者需要重复地输入和识别一些信息,定义一些新模型,以满足各工程应用子系统的具体需要,各子系统的概念信息也必须依靠人工来识别和综合处理,从而导致产品自动设计和制造中信息处理的中断,人为干预量大,数据大量重复处理的后果。其主要原因是作为当代CAD系统的核心实体造型存在下列不足:产品定义信息不完备。实体造型主要用来定义产品公称几何形状,而许多反映设计意图和工艺要求的信息,如公差、材料性质等难以在数据库中一起表达。这里由于工艺信息的表达既与高级的形状特征有关,又与低级的点、线、面几何要素有关,而实体造型难以提供这些信息。数据的抽象层次低。实体造型只能以低级的几何/拓扑信息来描述几何形状,而工程师进行思想交流,以及CIMS智能化处理过程中涉及的信息往往是高层的概念实体。支持产品设计的环境较差。传统的几何造型不利于进行创造性设计,这是因为它不能方便地修改设计模型,并且,即使实体零件的参数已被定义,在每次零件再生时,也必须重新显示输入所有参数。因此,必须开发取代现有实体造型的支撑系统,为CAD/CAM系统提供完备的和多层次的产品信息。这些信息能在无人干预的条件下,为设计、分析、制造所接受,且能在各应用子系统间自动变换,使CAD/CAM集成,以至CIMS的实现走向现实,由此产生了特征技术。特征技术是人工智能应用于实体模型的结果,它表达的产品信息完备且含有丰富的语义信息,为CAD/CAM集成提供了有力基础。3.2. 特征造型的特点和作用特征造型方法与前一代的几何造型方法相比较,有以下特点和作用:过去的CAD技术从二维绘图起步,经历了三维线框、曲面和实体造型发展阶段,都是着眼于完善产品的几何描述能力;而特征造型则是着眼于更好表达产品的完整的技术和生产管理信息,为建立产品的集成信息模型服务。它的目的是用计算机可以理解和处理的统一产品模型,替代传统的产品设计和施工成套图纸以及技术文档,使得一个工程项目或机电产品的设计和生产准备各环节可以并行展开,信息流畅通。它使产品设计工作在更高的层次上进行,设计人员的操作对象不再是原始的线条和体素,而是产品的功能要素,象螺纹孔、定位孔、键槽等。特征的引用直接体现设计意图,使得建立的产品模型容易为别人理解和组织生产,设计的图样更容易修改。设计人员可以将更多精力用在创造性构思上。它有助于加强产品设计、分析、工艺准备、加工、检验各部门间的联系,更好地将产品的设计意图贯彻到各个后续环节并且及时得到后者的意见反馈,为开发新一代的基于统一产品信息模型的CAD/CAPP/CAM集成系统创造前提。它有助于推动行业内的产品设计和工艺方法的规范化、标准化和系列化,使得产品设计中及早考虑制造要求,保证产品结构有更好的工艺性。它将推动各行业实践经验的归纳总结,从中提炼更多规律性知识,以丰富各领域专家的规则库和知识库,促进智能CAD系统和智能制造系统的逐步实现。3.3. 特征技术的研究概况 特征技术研究的萌芽产生于八十年代初,并于八十年代的中后期蓬勃发展起来。STEP标准中将形状和公差特征等列为产品定义的基本要素,使特征获得了国际标准的法定地位。国外许多研究单位和学者对特征技术的发展和应用做出了贡献。例如,英国Cranfield理工学院的Pratt和Wilson为CAM-I提出了一个按形状和构造特点对形状特征分类的模式;美国Arizona州立大学的Shah探讨了特征表达和解释问题,开发出ASU特征试验台;芬兰赫尔辛基技术大学的Mantyla教授研制了特征造型系统EXTDesign;意大利热亚那应用数学研究所的Falcidieno等人提出了边界模型表示特征对象的描述方法,特征识别方法,并开发了相应的系统;德国柏林技术大学的Beitz开发了基于特征的造型系统GEKO;Douglas等人研究了用凸多面体分解法进行加工特征几何推理技术;Turner等人研究了公差特征模型建立的问题;Roy等人研究了尺寸及公差表示处理的问题;Jaroslaw等人研究了特征编辑与查询技术;美国Purdue大学的Anderson等人研究了基于特征设计工艺规程的几何推理问题。在国内,北京航空航天大学、清华大学、华中理工大学、浙江大学、上海交通大学、西北工业大学等,以及其他一些单位也发表了一些关于特征技术研究的论著,并开发了一些特征造型系统。近年来,商业CAD软件及工具基本都融入了特征的思想和方法。例如,PTC公司的产品Pro/Engineer,SDRC的产品I-DEAS Master Series、UGS公司的产品Unigraphics、IBM公司的产品CATIA/CADAM、Autodesk公司的产品MDT,中国广州红地技术有限公司的产品“金银花(LONICERA)”系统,等等。3.4. 特征的定义 客观事物都是由事物本身的特性体及其相互关系构成。一般地讲,特征是客观事物特点的征象或标志。目前人们对于CAD中特征的定义尚没有达到完全统一。在研究特征技术的过程中,国内外学者从不同的侧面、不同的角度,根据需要给特征赋予了不同的含义。 在机械行业中,特征源于使用在各种设计、分析和加工活动的推理过程,并且经常紧密地联系到特定的应用领域,因而产生了不同的特征定义。当我们提到特征时,通常是指形状特征。形状特征的一种定义是面向规划的,例如,工件特征定义为:在工件的表面、边或角上形成的特定的几何构型。另一种涉及工艺规划的形状特征定义为: 工件上一个有一定特性的几何形状,其对于一种机械加工过程是特定的,或者用于装夹和/或测量目的。随着特征技术由工艺规划向设计、检验和工程分析方面的拓展,特征定义趋向于更一般化,下面是一些特征定义的例子:(1)用于描述零件和装配体的语义组,它将功能、设计和制造信息组合在一起;(2)一个几何形状或形体要素,它至少具有一种CIM功能;(3) 产品信息的载体,它可以在设计和制造或者其他工程任务之间辅助设计或进行通讯;(4) 任何用于设计、工程分析和制造的推理的客观对象;(5) 设计人员感兴趣的区域。研究人员提出了许多不同的特征,例如,功能性的特征有: 装配特征,配合特征,结构特征和抽象特征。抽象特征可用于设计过程,这是由于许多特征的细节在设计完成前并不清楚。抽象特征的定义为: 直到所有的变量被确定才能被具体化或实现的客观对象。不论特征的定义如何,但有一点似乎是共同的,即特征最终要联系到某个几何形状。Shah明确了一个特征至少满足的要求: 零件的一个结构组元;可影射到某个形状类;有工程意义;有可预测的性质。总之,特征是产品信息的集合,它不仅具有按一定拓扑关系组成的特定形状,且反映特定的工程语义,适宜在设计、分析和制造中使用。我们应该将特征理解为一个专业术语,它兼有形状和功能两种属性,从它的名称和语义足以联想其特定几何形状、拓扑关系、典型功能、绘图表示方法、制造技术和公差要求。3.5. 特征的表示方法 目前,常用的特征的表示方法主要有以下三种:基于B-rep的方法: 在B-rep 方法中,特征被定义为一个零件的相互联系的面的集合(面集)。这些特征也被称为“面特征”。B-rep 模型是基于图的,所有的几何/拓扑信息显式地表达在面棗边棗顶点图中,因此,B-rep模型常被称为赋值的模型。B-rep 表示特征的方法受到许多研究者的喜欢,这是因为可以得到充足的信息以及它是基于图的表示方法(许多特征识别系统是基于图表示的)。B-rep模型可以与属性值(如,表面粗糙度,材料等)、尺寸和公差联系在一起,B-rep 方法的缺点是它与特征体素和体积特征没有直接的联系,特征操作(如,删除特征)难于进行。基于CSG 的方法: 基于CSG 的特征表达方法将特征定义为体积元素,体积元素通过布尔操作构造零件。使用CSG 表示方法简捷、有效、易于编辑和操作体素,并提供CSG和特征体素之间有意义的联系,而且二叉树可用于特征模型的构造。对于特征提取,CSG 模型的主要问题是其表示的不唯一性,以及缺少对低层的构形元素的显式表达。然而,给CSG 模型赋值,推导出其相应的边界表示,就可以克服这些问题。基于混合CSG/B-rep的方法: 由于CSG 和B-rep表示方法都各有优缺点,因此,汲取二者优点的混合表示方法便产生了。Nnaji和Liu开发了一个工艺规划系统,可以提取基于CSG 的信息(B-rep信息是由CSG 模型导出的)。重新构造CSG 树和B-rep信息,使其成为以一种混合形式来表示特征的另一种CSG 树。Roy和Liu提出一种混合CSG/B-rep方法表示特征及尺寸和公差。特征的层次结构提供物体组件关系的多级表示,并在每级的细节保持有边界表示。Gossard等人提出一种在几何造型中显式地表示尺寸公差和几何特征的方法,此方法将CSG 和B-rep表示结合在一个被称为形体图的图结构中。混合CSG/B-rep方法是设计系统中表示特征的较好方法,这是因为它同时兼有CSG 模型及B-rep模型的优点: CSG 模型易于对高层元素操作,B-rep模型易于与低层元素(点、线、面)附加尺寸、公差和其他属性。3.6. 特征模型的建立方法 以特征来表示零件的方式即为零件的特征模型。由于特征的定义常依赖于应用,因而对不同的应用就有不同的特征模型,例如,有设计特征模型,制造特征模型,形状特征模型等。在几何造型环境下建立特征模型主要有两种方法。一种方法是特征识别: 首先建立一个几何模型,然后用程序处理这个几何模型,自动地发现并提取特征。另一种方法是基于特征的设计:直接用特征来定义零件的几何结构,几何模型可以由特征生成。图1为两种方法的示意图。近年来,又产生了一种混合特征建模方法,即特征设计与识别的集成建模方法。(1) 特征识别 许多应用程序,象工艺规划、NC编程、成组技术编码等所要求的输入信息包含几何构造和特征两方面。现已开发出各种技术方法,可以直接从几何模型数据库中获得这些输入信息。这些方法常被看作特征识别,它将几何模型的某部分与预定义的特征型相比较,进而识别出相匹配的特征例。特征识别常包含以下几个过程
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号