资源预览内容
第1页 / 共11页
第2页 / 共11页
第3页 / 共11页
第4页 / 共11页
第5页 / 共11页
第6页 / 共11页
第7页 / 共11页
第8页 / 共11页
第9页 / 共11页
第10页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
深度优先搜索(补充教案)一、搜索过程深度优先搜索的搜索过程类似树的先序遍历,也叫回溯法。搜索过程如下:从源节点开始发现有一节点v,如果v还有未探测到的边,就沿此边继续探测下去,当节点v的所有边都被探测过,搜索过程将回溯到最初发现v点的源节点。这一过程一直进行到已发现从源节点可达的所有节点为止。这显然是一个递归过程。为了在遍历过程中区分顶点是否被访问,往往可以引入一个数组,如以mark1.n作为标记。数组的元素取0和1,初值为0。当节点被访问时,与节点相应得数组元素为1,每次访问节点时,都得先检查它的标记值,找0值得节点访问,并深度继续。深度大的先得到扩展,具有“后产生先扩展”的特点,因此在数据结构上采用堆栈来存储(新节点入栈,节点不能扩展时,栈定出栈)。二、搜索特点1、 由于深度搜索过程中有保留已扩展节点,则不致于重复构造不必要的子树系统。2、 深度优先搜索并不是以最快的方式搜索到解,因为若目标节点在第i层的某处,必须等到该节点左边所有子树系统搜索完毕之后,才会访问到该节点,因此,搜索效率还取决于目标节点在解答树中的位置。3、 由于要存储所有已被扩展节点,所以需要的内存空间往往比较大。4、 深度优先搜索所求得的是仅仅是目前第一条从起点至目标节点的树枝路径,而不是所有通向目标节点的树枝节点的路径中最短的路径。5、 适用范围:适用于求解一条从初始节点至目标节点的可能路径的试题。若要存储所有解答路径,可以再建立其它空间,用来存储每个已求得的解。若要求得最优解,必须记下达到目前目标的路径和相应的路程值,并与前面已记录的值进行比较,保留其中最优解,等全部搜索完成后,把保留的最优解输出。三、算法描述1、算法数据结构描述:深度优先搜索时,最关键的是结点扩展()表的生成,它是一个栈,用于存放目前搜索到待扩展的结点,当结点到达深度界限或结点不能再扩展时,栈顶结点出栈,放入CLOSE表(存放已扩展节点),继续生成新的结点入栈OPEN表,直到搜索到目标结点或OPEN栈空为止。具体算法如下: 把起始结点S放到非扩展结点OPEN表中(后进先出的堆栈),如果此结点为一目标结点,则得到一个解。 如果OPEN为一空表,则搜索失败退出。 取OPEN表最前面(栈顶)的结点,并把它放入CLOSED的扩展结点表中,并冠以顺序编号。 如果结点的深度等于最大深度,则转向。 否则,扩展结点,产生其全部子结点,把它们放入OPEN表的前头(入栈),并配上指向的返回指针;如果没有后裔,则转向。 如果后继结点中有任一个为目标结点,则求得一个解,成功退出;否则,转向。2、算法程序描述: 递归递归过程为:Procedure DEF-GO(step)for i:=1 to max doif 子结点符合条件 then 产生新的子结点入栈;if 子结点是目标结点 then 输出else DEF-GO(step+1);栈顶结点出栈;endif;enddo;主程序为:Program DFS;初始状态入栈;DEF-GO(1); 非递归Program DEF(step);step:=0;repeatstep:=step+1;j:=0;p:=falserepeatj:=j+1;if 结点符合条件 then产生子结点入栈;if 子结点是目标结点 then 输出else p:=true;else if j=max then 回溯 p:=false;endif;until p=true;until step=0;回溯过程如下:Procedure BACK;step:=step-1;if step0 then 栈顶结点出栈else p:=true;例如八数码难题-已知个数的起始状态如图1(),要得到目标状态为图1()。 ()()图1求解时,首先要生成一棵结点的搜索树,按照深度优先搜索算法,我们可以生成图2的搜索树。图中,所有结点都用相应的数据库来标记,并按照结点扩展的顺序加以编号。其中,我们设置深度界限为。粗线条路径表示求得的一个解。从图中可见,深度优先搜索过程是沿着一条路径进行下去,直到深度界限为止,回溯一步,再继续往下搜索,直到找到目标状态或OPEN表为空为止。图 2四、关于深度优先搜索的下界对于许多问题,深度优先搜索查找的解答树可能含有无穷分支(深度优先搜索误入无穷分支就不可能找到目标节点),或者其深度可能至少要比某个可以接受的解答系列的已知上限还要深,或者能估计出目标节点不会超过多少层。为了避免可能太长的路径,给出一个节点扩展的最大深度,即深度界限D,任何节点达到了D,那么都将它们作为没有后继节点处理。如图2我们设置深度界限为,如果我们不对它的深度进行限定,那么第5层以下可以产生大量的搜索节点,而目标节点可以在第5层找到。深度优先搜索是最常用的算法之一,而确定“深度D”是解题的关键,因为我们需要它消除不必要的搜索,提高搜索效率。估算“深度D”的方法:无章可循,凭经验和大致的计算,在时间和空间允许的范围内,宁大勿小。例题1:设有A,B,C,D,E五人从事J1,J2,J3,J4,J5五项工作,每人只能从事一项,他们的效益如下, 求最佳安排使效益最高。 图3分析:每人选择五项工作中的一项,在各种选择的组合中,找到效益最高的的一种组合输出。算法步骤:数据库:用数组构成堆栈存放产生的结点;数组存放当前最高效益结点的组合;数组作为结点是否选择过的标志位。结点的产生:(1)选择(i)=0的结点;(2)判断效益是否高于记录结点的效益,是高于则更新数组及最高效益值。搜索策略: 深度优先搜索。源程序如下:program exam1;constdata: array 1.5,1.5 of integer=(13,11,10,4,7),(13,10,10,8,5),(5,9,7,7,4),(15,12,10,11,5),(10,11,8,8,4);vari,max: integer;f,g: array 1.5 of integer;p: array 1.5 of integer;procedure go(step,t: integer); 选择最佳效益结点的组合vari: integer;beginfor i:=1 to 5 doif pi=0 then beginfstep:=i;pi:=1;t:=t+datastep,i;if stepmax then beginmax:=t;g:=f;end;t:=t-datastep,i;pi:=0;end;end;beginmax:=0;for i:=1 to 5 do pi:=0;go(1,0);writeln;for i:=1 to 5 do write(chr(64+i),:J,gi,:3);writeln;writeln(supply: ,max);end.例题2:马的遍历中国象棋半张棋盘如图4(a)所示。马自左下角往右上角跳。今规定只许往右跳,不许往左跳。比如图4(a)中所示为一种跳行路线,并将所经路线打印出来。打印格式为:0,0-2,1-3,3-1,4-3,5-2,7-4,841322马1340 1 2 3 4 5 6 7 8 (a) (b)图4分析:如图4(b),马最多有四个方向,若原来的横坐标为j、纵坐标为i,则四个方向的移动可表示为:1: (i,j)(i+2,j+1); (i3,j8)2: (i,j)(i+1,j+2); (i4,j0,j1,j); writeln(4,8,t:5); readln;end;procedure try(i:integer); 搜索var j:integer;begin for j:=1 to 4 do if (ai-1,1+xj,1=0) and (ai-1,1+xj,1=0) and (ai-1,2+xj,2=8) then begin ai,1:=ai-1,1+xj,1; ai,2:=ai-1,2+xj,2; if (ai,1=4) and (ai,2=8) then print(i) else try(i+1); 搜索下一步 ai,1:=0;ai,2:=0 end;end;begin 主程序 try(2);end.
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号