资源预览内容
第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
第4页 / 共5页
第5页 / 共5页
亲,该文档总共5页全部预览完了,如果喜欢就下载吧!
资源描述
1 1 110.4中心对称教学目标知 识 与 技 能1.了解中心对称、对称中心和对称点的概念.2.理解中心对称的性质.3.掌握运用中心对称的性质作图的方法过 程 与 方 法通过观察、探索等过程,使学生更深刻地理解轴对称、平移、旋转及组合等几何变换的规律和特征,并体会图形之间的变换关系情感态度价值观运用讨论交流等方式,让学生自己探索出图形变化的过程,发展学生的图形分析能力、化归意识和综合运用变换解决有关问题的能力教学重点1.中心对称的概念.2.中心对称的性质,利用中心对称的性质进行作图.教学难点中心对称与轴对称的区别与联系教学内容与过程教法学法设计一、情境导入,初步认识什么是轴对称图形?什么是轴对称?什么是旋转?什么是旋转对称图形?【教学说明】对本章所涉及到的几种图形进行复习,为学习中心对称打基础.二、思考探究,获取新知1.观察下图,它们是什么图形?【归纳结论】 把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.2.如图,ABC与A1B1C1关于点O成中心对称,图中有哪些线段相等?归纳结论】 关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;反过来,如果两个图形的所有对应点连线都经过某一点,并且被这点平分,那么这两个图形关于这一点对称.3.中心对称与轴对称的联系与区别4.如图,已知ABC和点O,画出DEF,使DEF和ABC关于点O成中心对称.分析:中心对称就是旋转180,关于点O成中心对称就是绕点O旋转180,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连结DE、EF、FD.则DEF即为所求的三角形. 【教学说明】 通过以上作图、观察,理解中心对称的概念、性质.三、运用新知,深化理解1.下列图形中,是中心对称图形的是( )2.下列多边形中,是中心对称图形而不是轴对称图形的是( )A.平行四边形 B.矩形 C.菱形 D.正方形3.按下列要求正确画出图形:(1)已知ABC和直线MN,画出ABC关于直线MN对称的图形;(2)已知四边形ABCD和点O,画出四边形ABCD关于点O成中心对称的四边形.4.如图,在平面直角坐标系中, 若ABC与A1B1C1关于E点成中心对称, 求对称中心E点的坐标.(1)ABC如图所示;(2)四边形ABCD如图所示.4.分析:连接对应点AA1、CC1,根据对应点的连线经过对称中心,则交点就是对称中心E点,在坐标系内确定出其坐标.解:连接AA1、CC1,则交点就是对称中心E点.观察图形知E(3,-1).四、师生互动,课堂小结先小组内交流收获和感想然后以小组为单位派代表进行总结.教师加以补充.课后作业1.布置作业:教材第132页“习题10.4”中第3、4 题.教学反思
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号