资源预览内容
第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
第4页 / 共5页
第5页 / 共5页
亲,该文档总共5页全部预览完了,如果喜欢就下载吧!
资源描述
第二讲 分数的速算与巧算(培优题)上一讲复习题: 【解析】 观察可知原式每一项的分母中如果补上分子中的数,就会是5个连续自然数的乘积,所以可以先将每一项的分子、分母都乘以分子中的数即:原式现在进行裂项的话无法全部相消,需要对分子进行分拆,考虑到每一项中分子、分母的对称性,可以用平方差公式:,【解析】 原式【例 1】【解析】 原式【例 2】 【解析】 本题为典型的“隐藏在等差数列求和公式背后的分数裂差型裂项”问题。此类问题需要从最简单的项开始入手,通过公式的运算寻找规律。从第一项开始,对分母进行等差数列求和运算公式的代入有, 原式【巩固】 原式()()()()【巩固】【解析】 ,所以原式【巩固】【解析】 原式【例 3】 . 【解析】 这题是利用平方差公式进行裂项:,原式【巩固】 计算:【解析】 原式【巩固】 计算: 【解析】 原式【巩固】 计算: 【解析】 式子中每一项的分子与分母初看起来关系不大,但是如果将其中的分母根据平方差公式分别变为,可以发现如果分母都加上1,那么恰好都是分子的4倍,所以可以先将原式乘以4后进行计算,得出结果后除以4就得到原式的值了原式【巩固】 【解析】 (法1):可先找通项原式(法2):原式【例 4】 【解析】原式【巩固】 计算:【解析】 先找通项公式原式 【巩固】【解析】 先找通项:,原式 【例 5】 【解析】 找通项原式,通过试写我们又发现数列存在以上规律,这样我们就可以轻松写出全部的项,所以有原式【例 6】【解析】原式=【巩固】【解析】原式【例 7】 计算:【解析】 通项公式:,原式【巩固】 计算: 【解析】 本题的通项公式为,没办法进行裂项之类的处理注意到分母,可以看出如果把换成的话分母的值不变,所以可以把原式子中的分数两两组合起来,最后单独剩下一个将项数和为100的两项相加,得,所以原式(或者,可得原式中99项的平均数为1,所以原式)【例 8】 【解析】 虽然很容易看出,可是再仔细一看,并没有什么效果,因为这不象分数裂项那样能消去很多项我们再来看后面的式子,每一项的分母容易让我们想到公式 ,于是我们又有减号前面括号里的式子有10项,减号后面括号里的式子也恰好有10项,是不是“一个对一个”呢?
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号