资源预览内容
第1页 / 共6页
第2页 / 共6页
第3页 / 共6页
第4页 / 共6页
第5页 / 共6页
第6页 / 共6页
亲,该文档总共6页全部预览完了,如果喜欢就下载吧!
资源描述
人教版九年级数学上册导学案课题:24.4.1弧长和扇形面积 大荔县东七初中 朱晓红 明确目标学习目标1理解弧长和扇形面积公式的推导过程,掌握公式并能正确熟练地运用两个公式进行相关计算;2、经历用类比、联想的方法探索公式推导过程,培养学生的数学应用意识,分析问题和解决问题的能力。 批注 教师引领学生从题目中确立出本节课的学习目标,重点,难点。重点:弧长公式和扇形面积公式的推导及公式的应用。难点:运用公式解决实际问题关键:理解1弧长公式和1扇形面积公式。利用“动态”思想理解弧长公式和扇形面积公式推导,让学生体验知识的形成过程。实施目标创设问题情境,引入新课(1分钟)师在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的一部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索探究新知一、复习(2分钟)1圆的周长如何计算?2圆的面积如何计算?3圆的圆心角是多少度?生若圆的半径为r,则周长l2r,面积Sr2,圆的圆心角是360二.、自主学习,合作探究(25分钟)逐步完成导学案: 1、已知圆O的半径为2,这个圆的周长是 ,面积是 。 当圆心角为180时,弧长是 ,弧为 ;当圆心角为360时,弧长是 ,弧为 ; 当圆心角为90时,弧长是 ,弧为圆周的 分之 ; 当圆心角为60时,弧长是 ;弧为圆周的 分之 ; 当圆心角为30时,弧长是 ;弧为圆周的 分之 ; 当圆心角为1时,弧长是 ;弧为圆周的 分之 ; 2、你能推导出半径为R,圆心角为n时,弧长是多少吗? 【360的圆心角对应圆周长2R,那么1的圆心角对应的弧长为 ,n的圆心角对应的弧长应为1的圆心角对应的弧长的n倍,即n 】在半径为R的圆中,n的圆心角所对的弧长(arclength)的计算公式为:l3.即时练习(5分钟)(1)在半径为1厘米的圆中,120的圆心角所对的弧长是 ;(2)在圆中,120的圆心角所对的弧长是4/3厘米,则该圆所对的半径是 ;(3)如果远的半径是3厘米,一弧长是2厘米,则这段弧长所对的圆心角是 ;4、类似的, 你能推导出半径为R,圆心角为n时,扇形面积是多少吗? 【圆的面积为R2,1的圆心角对应的扇形面积为 ,n的圆心角对应的扇形面积为n因此扇形面积的计算公式为S扇形R2,其中R为扇形的半径,n为圆心角5、继续探索:当扇形半径为R,圆心角为n时,扇形面积S扇形与弧长l之间会有什么关系吗? 【在这两个公式中,我们发现弧长和扇形面积都和圆心角n半径R有关系,因此l和S之间也有一定的关系lR,S扇形R2,R2RRS扇形lR】6.即时练习(学生独立完成)(1)已知扇形的半径为2,圆心角为120,则S扇形= ;(2)已知扇形的面积为5,圆心角为50,则半径为 ;(3)已知半径为2厘米的扇形,弧长是4/3厘米,则S扇形= ;(4)一个扇形的弧长是20厘米,面积是240厘米,那么扇形的圆心角是 ;(两种方法求解)三.精讲点拨(5分钟)例1、制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即AB的长(结果精确到0.1mm)分析:要求管道的展直长度,即求AB的长,根根弧长公式l180nR可求得AB的长,其中n为圆心角,R为半径 解: R40mm,n110 AB的长180/nR180/1104076. 8mm 因此,管道的展直长度约为76.8mm四.课堂小结(2分钟)1.弧长、扇形面积的大小与哪些因素有关?2.扇形面积公式与弧长公式有什么区别?3.扇形面积单位与弧长单位有什么区别?从学生熟悉的问题情景引入课题,从而吸引学生的注意,激发学生的学习兴趣,一.通过复习圆周长公式以及圆心角和其所对弧的关系,二.在老师的问题引导下以小组为单位交流讨论得出弧长计算公式,明确弧长与圆心角、半径之间的关系3.巩固弧长公式,能运用公式解决问题4.锻炼学生探索新知的能力,教会学生一种数学思想和方法。加深学生对扇形面积公式的理解和记忆5.学生比较两个公式,找它们的联系,明确知识之间的联系,在解题时,根据条件,选择适当的公式6.巩固扇形面积公式,能运用公式解决问题例1.巩固所学的公式,能运用公式解决实际问题,让学生体验成功的乐趣。四.总结回顾学习内容,帮助学生学会归纳,反思。落实目标(一).课内检测(5分钟)1、若扇形的圆心角为120,弧长为cm10,则扇形半径为_,扇形面积为_。 2、如果一个扇形的面积和一个圆面积相等,且扇形的半径为圆半径的2倍,这个扇形的中心角为_。 3、已知扇形的周长为28cm,面积为49cm2,则它的半径为_cm。 4、如图,两个同心圆被两条半径截得的的长为6 cm,的长为10 cm,又AC12cm,求阴影部分ABDC的面积(二)课外拓展第115页 习题244 必做题1、2题; 选做题3题 (一) 巩固公式,反映学习效果。(二)分层作业,激发学生的学习兴趣。巩固公式,反映学习效果板书设计 24.4.1弧长和扇形面积 一、扇形弧长 二、扇形面积 三、例题 l S扇形R2 lR 例1 , 条理清晰,突出重点。便于学生理解和掌握教后反思本节课能从学生熟悉的问题情景引入课题,从而吸引学生的注意,激发学生的学习兴趣在探求弧长公式时,通过问题串一步一步引导学生获得弧长公式,让学生知道公式是怎么得来的。对于扇形面积公式,让学生类比弧长公式的探讨过程,通过小组讨论,合作探究方法让学生巩固了公式的形成过程,符合新课程所倡导的“以学生为主体,教师为主导”的教学理念。培养了学生应用数学、探究意识和创新能力。由于内容不是很难,所以整个教学过程学生都能积极参与,课堂气氛比较活跃,这是我感觉本节课取得成功的地方。本节课的不足在于时间的分配上不是很合理,由于学生在探索弧长公式时我担心引导措施不到位,导致时间过长,后面的教学环节比较吃紧,对学生在落实目标(二)上没有足够的时间。有待于在今后的教学中注意这方面的问题,以便进一步提高课堂教学效率。
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号