资源预览内容
第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
第4页 / 共5页
第5页 / 共5页
亲,该文档总共5页全部预览完了,如果喜欢就下载吧!
资源描述
3、3、4两条平行直线之间的距离 练习二一、 选择题1、直线3x-2y+m=0与直线的位置关系是( )A、平行 B、垂直 C、相交 D、与m的取值有关 2、一条光线沿直线x+2y-3=0方向射到直线x+y=0上且被反射,则反射光线所在直线方程为( )A、2x-y-3=0 B、2x+y-3=0 C、2x-y+3=0 D、2x+y+3=03、过点(1,2)且与原点距离最大的直线方程为( )A、x+2y-5=0 B、2x+y-4=0 C、x+3y-7=0 D、3x+y-5=04、已知平行四边形相邻的两边的直线方程是,此四边形两条对角线的交点是(2,3),则平行四边形另外两边所在直线方程为( )A、2x-y+7=0和x-3y-4=0 B、x-2y+7=0和3x-y-4=0 C、x-2y+7=0和x-3y-4=0 D、2x-y+7=0和3x-y-4=05、过点P(1,2)引直线,使A(2,3),B(4,-5)到它的距离相等,则这条直线的方程为( )A、4x+y-6=0 B、x+4y-6=0 C、2x+3y-7=0或x+4y-6=0 D、3x+2y-7=0或4x+y-6=06、如果直线ax+2y+2=0与直线3x-y-2=0平行,那么a等于( )A、-3 B、-6 C、 D、7、过点A(1,2)和点B(-3,2)的直线与直线y=0的位置关系是( )A、相交 B、平行 C、重合 D、以上都不对8、直线和直线(a-2)x+3ay+2a=0没有公共点,则a的值是( )A、2;B、0;C、-1;D、0或-1 二、填空题9、与直线5x+12y-31=0平行,且距离为2 的直线方程是_。三、解答题10、求直线3xy4=0关于点P(2,1)对称的直线l的方程11、设x2y=1,求x2y2的最小值;若x0,y0,求x2y2的最大值.12、已知两直线 l1:axby+4=0,:(a1)x+y+b=0.求满足下列条件的a,b的值:直线l1/,且原点到直线,的距离相等13、过直线2xy8=0和直线xy3=0的交点作一条直线,使它夹在两条平行直线xy5=0和xy2=0之间的线段长为,求该直线的方程. 14、已知直线l1:2xy4=0,求l1关于直线l:3x4y=1对称的直线l2的方程.15、光线通过A(2,4),经直线2xy7=0反射,若反射线通过点B(5,8).求入射线和反射线所在直线的方程.答案:一、 选择题1、C;2、D;3、A;4、B;5、D;6、B;7、B;8、D二、 填空题9、5x+12y-34=0或5x+12y+18=0三、 解答题10、由直线 l与3xy4=0平行,故设直线l方程为3xyb=0. 由图所示,点 P到两直线距离相等,得 解得: b=10或b=4(舍). 所求直线 l的方程3xy10=0.11、欲求 x2y2的最小值,可利用代入法转化为关于x(或y)的二次三项式,然后利用函数求最值的方法处理,但考虑到x2y2的几何意义较明显,即表示P(x,y)到原点的距离,故可从这个角度入手处理本题. 如图所示,在直角坐标系中, x2y=1表示直线,记d2=x2y2,它表示直线上的点到原点的距离的平方,显然原点到直线x2y=1的距离的平方即为所求的最小值,即.12、解: l1/, 且的斜率为1a 的斜率也存在且为,即:(a1)x+y+=0:(a1)x+y+由条件可得:a=2或a=因此或13、解:由交点M(5,2) 设所求直线 l与l1、l2分别交于B、A两点, 由已知 |AB|=,又l1、l2间距离, 在 RtABC中,设l1到l的角为,则. 设直线 l的斜率为k,由夹角公式得 . 所求直线的方程为 2xy8=0或x2y1=0.14、由得l1与l的交点为P(3,2),显见P也在l2上. 设 l2的斜率为k,又l1的斜率为2,l的斜率为,则 故 l2的直线方程为,即2x11y16=0.15、如图所示,已知直线 l:2xy7=0, 设光线 AC经l上点C反射为BC,则1=2 再设 A关于l的对称点为A(a,b),则1=3, 2=3,则B,C,A三点共线. AAl且AA中点在l上, 解得 a=10,b=2,即A(10,2). AB的方程为,即2xy18=0. AB与l的交点为C() 入射线AC的方程为,即2x11y48=0 入射线方程为 2x11y48=0,反射线方程为2xy18=0.
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号