资源预览内容
第1页 / 共6页
第2页 / 共6页
第3页 / 共6页
第4页 / 共6页
第5页 / 共6页
第6页 / 共6页
亲,该文档总共6页全部预览完了,如果喜欢就下载吧!
资源描述
2019人教版精品教学资料高中选修数学第二章 2.2 2.2.2A级基础巩固一、选择题1命题“三角形中最多只有一个内角是直角”的结论的否定是(C)A有两个内角是直角B有三个内角是直角C至少有两个内角是直角D没有一个内角是直角解析“最多只有一个”的含义是“有且仅有一个或者没有”,因此它的反面应是“至少有两个”2如果两个数之和为正数,则这两个数(D)A一个是正数,一个是负数B都是正数C不可能有负数D至少有一个是正数解析两个数的和为正数,可以是一正一负,也可以是一正一为0,还可以是两正,但不可能是两负3否定“自然数a、b、c中恰有一个偶数”的正确反设为(D)A自然数a、b、c都是奇数B自然数a、b、c都是偶数C自然数a、b、c中至少有两个偶数D自然数a、b、c中或都是奇数或至少有两个偶数解析恰有一个偶数的否定有两种情况,其一是无偶数(全为奇数),其二是至少有两个偶数4若a、b、cR,且abbcca1,则下列不等式成立的是(B)Aa2b2c22B(abc)23C2Dabc(abc)解析a、b、cR,a2b22ab,b2c22bc,a2c22ac,a2b2c2abbcac1又(abc)2a2b2c22ab2bc2aca2b2c223.5用反证法证明命题:三角形三个内角至少有一个不大于60时,应假设(B)A三个内角都不大于60B三个内角都大于60C三个内角至多有一个大于60D三个内角至多有两个大于60解析三个内角至少有一个不大于60,即有一个、两个或三个不大于60,其反设为都大于60,故B正确6若ab0,则下列不等式中总成立的是(A)AabBCabD解析可通过举反例说明B、C、D均是错误的,或直接论证A选项正确二、填空题7设实数a、b、c满足abc1,则a、b、c中至少有一个数不小于.解析假设a、b、c都小于,则abc2,求证:x、y中至少有一个大于1解析A中命题条件较少,不易正面证明;B中命题是否定性命题,其反设是显而易见的定理;D中命题是至少性命题,其结论包含两种情况,而反设只有一种情况,适合用反证法证明2设a、b、cR,Pabc,Qbca,Rcab,则“PQR0”是P、Q、R同时大于零的(C)A充分而不必要条件B必要而不充分条件C充要条件D既不充分又不必要条件解析若P0,Q0,R0,则必有PQR0;反之,若PQR0,也必有P0,Q0,R0.因为当PQR0时,若P、Q、R不同时大于零,则P、Q、R中必有两个负数,一个正数,不妨设P0,Q0,即abc,bca,两式相加得b0,Q0,R0.3用反证法证明命题“设a、b为实数,则方程x3axb0至少有一个实根”时,要做的假设是(A)A方程x3axb0没有实根B方程x3axb0至多有一个实根C方程x3axb0至多有两个实根D方程x3axb0恰好有两个实根解析至少有一个实根的否定为:没有实根4下面的四个不等式:a2b2c2abbcca;a(1a);2;(a2b2)(c2d2)(acbd)2.其中恒成立的有(C)A1个B2个C3个D4个解析a2b2c2abbcac,a(1a)a2a(a2)0,(a2b2)(c2d2)a2c2a2d2b2c2b2d2a2c22abcdb2d2(acbd)2只有当0时,才有2成立,应选C二、填空题5在空间中有下列命题:空间四点中有三点共线,则这四点必共面;空间四点,其中任何三点不共线,则这四点不共面;垂直于同一直线的两直线平行;两组对边分别相等的四边形是平行四边形其中真命题是_.解析四点中若有三点共线,则这条直线与另外一点必在同一平面内,故真;四点中任何三点不共线,这四点也可以共面,如正方形的四个顶点,故假;正方体交于同一顶点的三条棱所在直线中,一条与另两条都垂直,故假;空间四边形ABCD中,可以有ABCD,ADBC,例如将平行四边形ABCD沿对角线BD折起构成空间四边形,这时它的两组对边仍保持相等,故假6若二次函数f(x)4x22(p2)x2p2p1在区间1,1内至少存在一点c,使f(c)0,则实数p的取值范围为p(3,).解析解法一:(补集法)令,即,即,p3或p,实数p的取值范围是3p0或f(1)0,即2p2p10或2p23p90,p1或3p,3p1).用反证法证明方程f(x)0没有负数根解析假设x0为方程f(x)0的负根,则有ax00,即ax01,显然x01.1当0x01时,1x010,3,12.而ax0x01的解2当x01时,x010,0,10,矛盾,即不存在x01的解综上所述方程f(x)0没有负数根C级能力提高1设x,y,z为正实数,ax,by,cz,则a,b,c三数(C)A至少有一个不大于2B都小于2C至少有一个不小于2D都大于2解析abc(x)(y)(z)2226,a,b,c三个数中至少有一个不小于2,否则会出现abc0,b0,得0.a、b为有理数,即ab为有理数为有理数,为有理数()()为有理数,即2为有理数从而也就为有理数,这与已知为无理数矛盾,一定为无理数
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号