资源预览内容
第1页 / 共7页
第2页 / 共7页
第3页 / 共7页
第4页 / 共7页
第5页 / 共7页
第6页 / 共7页
第7页 / 共7页
亲,该文档总共7页全部预览完了,如果喜欢就下载吧!
资源描述
附录B.英文文献 There are many types of CAE technology, including the finite element method, boundary element method, finite difference method. Each method has its own application areas, of which the application of finite element method more and more areas, has been used in structural mechanics, structural dynamics, thermodynamics, fluid mechanics, circuit theory, electromagnetism and so on. ANSYS software is the financial structure, fluid, electric field, magnetic field, acoustic field analysis in one large-scale finite element analysis software. By the worlds largest finite element analysis software ANSYS, one of the United States developed it with most CAD software interface for data sharing and exchange, such as Pro / Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD, are modern Advanced CAE product design tools. ANSYS finite element package is a multi-purpose finite element method for computer design program, can be used to solve the structure, fluid, electricity, electromagnetic fields and collision issues. So it can be applied to the following industries: aerospace, automotive, biomedical, bridges, construction, electronics, heavy machinery, micro-electromechanical systems, sports equipment, etc. Finite Element Analysis (FEA, Finite Element Analysis) of the basic concept is to re-place the relatively simple problem to solve complex problems later. As it will solve the do-main is composed of many small-called finite element subdomain interconnection compone-nts,assuming that each unit of an appropriate (relatively simple) approximate solution, and then derived the general solution of the domain satisfy the conditions (such as balanced con-ditions), thus the solution of the problem. This solution is not exact solutions,but appro-ximate solution, since the actual problem is relatively simple to replace the problem. Since most practical problems it is difficult to be accurate solution, while finite element is not only high accuracy but also to adapt to a variety of complex shapes, thereby becoming an effective means of engineering analysis. FEM together those who are able to express the actual domain for the discrete element. The concept of the finite element as early as several centuries ago and have been applied, for example, polygon (a finite number of straight-line unit) to get close to circle the cir-cumference of a circle, but as a way to be made, it is the most recent matter. Finite ele-ment method was originally known as the matrix approximation method, the structural strength of aircraft used in the calculation, and because of its convenience, practicality and effectiveness arising from research scientists to engage in mechanical interest. Through the efforts of just a few decades, with the rapid development of computer technology and the popularity of the finite element method in structural engineering from the intensity of the rapid analysis extended to almost all areas of science and technology, become a rich and colorful, practical and efficient application of a wide range of numerical analysis. Finite element method with other methods of solving the boundary value problem simil-ar to the fundamental difference is that the approximation of it is limited to relatively small sub-domain. 60 In the early 20th century structure was first proposed the concept of the finite element calculation of Clough (Clough), Professor vividly describes as: The finite element method + = Rayleigh Ritz method piecewise function, that is, the finite element method is the Rayleigh Ritz method a localized situation. Different from the solution of (often difficult) to satisfy the boundary conditions of the definition of domain function to allow the Rayleigh Ritz method, finite element method will be defined in a simple function of geometry (such as two-dimensional problem of arbitrary quadrilateral or triangle) on the unit domain ( piecewise function), the definition does not consider the whole domain of the complex boundary conditions, this is the finite element method is superior to other similar methods of one of the reasons why. Different physical properties and mathematical models of the problem, finite element method to solve the basic steps are the same, only the specific formula to solve a different derivation and computation. Finite Element Analysis of the basic steps are as follows: The first step: the definition of the problem and solution domain: In accordance with the actual problem solving domain approximation to determine the physical properties and geometry of the region. The second step: Solving domain discretization: The approximate solution of the domain with different size and shape of a limited and linked to each other unit, composed of a fin-ite number of discrete domains, the habit of division as the finite element network. Obvio-usly the smaller the unit (the finer t he network) is similar to the level of discrete domain, the better
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号