资源预览内容
第1页 / 共3页
第2页 / 共3页
第3页 / 共3页
亲,该文档总共3页全部预览完了,如果喜欢就下载吧!
资源描述
www.ks5u.com计数原理02解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)1求二项式()15的展开式中:(1)常数项;(2)有几个有理项;(3)有几个整式项【答案】展开式的通项为:Tr+1= = (1)设Tr+1项为常数项,则=0,得r=6,即常数项为T7=26; (2)设Tr+1项为有理项,则=5-r为整数,r为6的倍数,又0r15,r可取0,6,12三个数,故共有3个有理项 (3) 5-r为非负整数,得r=0或6,有两个整式项 2现有4个同学去看电影,他们坐在了同一排,且一排有6个座位问:(1)所有可能的坐法有多少种?(2)此4人中甲,乙两人相邻的坐法有多少种?(3)所有空位不相邻的坐法有多少种?(结果均用数字作答)【答案】 (1) (2) (3)2有9名学生,其中2名会下象棋但不会下围棋,3名会下围棋但不会下象棋,4名既会下围棋又会下象棋;现在要从这9名学生中选出2名学生,一名参加象棋比赛,另一名参加围棋比赛,共有多少种不同的选派方法?【答案】设2名会下象棋但不会下围棋的同学组成集合A,3名会下围棋但不会下象棋的同学组成集合B,4名既会下围棋又会下象棋的同学组成集合C,则选派2名参赛同学的方法可以分为以下4类:第一类:A中选1人参加象棋比赛,B中选1人参加围棋比赛,方法数为种; 第二类:C中选1人参加象棋比赛,B中选1人参加围棋比赛,方法数为种; 第三类:C中选1人参加围棋比赛,A中选1人参加象棋比赛,方法数为种; 第四类:C中选2人分别参加两项比赛,方法数为种;由分类加法计数原理,选派方法数共有:6+12+8+12=38种。3(1)已知(x+1)6(ax-1)2的展开式中含x3的项的系数是20,求a的值。(2)设(5x)n的展开式的各项系数之和为M,二项式系数之和为N,若MN240,求展开式中二项式系数最大的项。【答案】(1)0或5(2)依题意得,M4n(2n)2,N2n,于是有(2n)22n240,(2n15)(2n16)0,2n1624,n4,得64已知 的展开式前三项中的x的系数成等差数列 求展开式里所有的x的有理项; 求展开式中二项式系数最大的项 【答案】(1) n=8, r=0,4,8时,即第一、五、八项为有理项,分别为 (2)二项式系数最大的项为第五项: 5男运动员6名,女运动员4名,其中男女队长各1人,从中选5人外出比赛,下列情形各有多少种选派方法(结果用数字作答).男3名,女2名 队长至少有1人参加至少1名女运动员 既要有队长,又要有女运动员【答案】从10名运动员中选5人参加比赛,其中男3人,女2人的选法有CC120 (种)从10名运动员中选5人参加比赛,其中队长至少有1人参加的选法有CCCC14056196 (种)从10名运动员中选5人参加比赛,其中至少有1名女运动员参加的选法有CC2461 (种)从10名运动员中选5人参加比赛,既要有队长又要有女运动员的选法有CCC191 (种)
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号