资源预览内容
第1页 / 共24页
第2页 / 共24页
第3页 / 共24页
第4页 / 共24页
第5页 / 共24页
第6页 / 共24页
第7页 / 共24页
第8页 / 共24页
第9页 / 共24页
第10页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第十九章一次函数191函数191.1变量与函数第1课时变量与常量理解变量、常量的概念重点变量与常量的概念,变量之间的关系难点理解并掌握变量以及变量之间的关系一、创设情境,引入新课情境问题:一辆汽车以60千米/时的速度行驶,行驶路程为s千米,行驶时间为t小时请同学们根据题意填写下表:t/时12345s/千米师:在以上过程中,有没有变化的量?有没有始终不变的量?生:变化的量是时间和路程,不变的量是速度师:1小时路程为60千米,2小时路程为260千米,所以t小时路程为60t千米,即s60t.这个问题反映了匀速行驶的汽车所行驶的路程随时间变化的过程,在现实生活中,有许多类似的问题,在这些问题中都有变化着的量和始终不变的量二、讲授新课1每张电影票零售价为10元,如果早场售出150张,午场售出205张,晚场售出310张,三场电影的票房收入各是多少元?设一场电影售出x张票,如何用含x的式子表示票房收入y元?生:早场收入为150101500(元),午场收入为205102050(元),晚场收入为310103100(元),当售出的票数为x张时,收入y10x.师:在这个过程中有没有变化着的量与始终不变的量?生:有,售出的张数与票房收入是变化着的量,每张电影票的售价是始终不变的量2活动一:请大家动手画出一个面积为10 cm2,20 cm2的圆各一个生:必须先根据圆的面积公式算出半径,再画圆师:那么它们的半径各是多少呢?生:第一个圆的半径为1.8 (cm);第二个圆的半径为2.5(cm)师:如果圆的面积为S,怎样表示出半径r?生:r.师:在这个过程中,变量与常量各是什么?生:这里变量是S和r,常量是.3活动二:用10 m长的绳子围成长方形,改变长方形的长度,观察长方形面积的变化,并记录不同长方形的长度值,计算相应的面积生1:当长为4 m时,宽为1 m,面积为414(m2)生2:当长为3 m时,宽为2 m,面积为326(m2)师:设长方形的长度为x m,如何求出它的面积S?生:当长为x m时,它的宽是(5x) m,因此它的面积是Sx(5x)m2.师:长方形的长与宽以及面积是变量,绳子的总长是常量这些问题反映了不同事物的变化过程,其中有些量的值是按照某种规律变化的,像这种数值发生变化的量称为变量,有些量的数值始终不变,像这种数值始终不变的量称为常量三、巩固练习1购买一些练习本,单价0.5元/本,总价y(元)随练习本本数x的变化而变化,指出其中的常量与变量,并写出关系式【答案】y0.5x,其中x,y是变量,0.5是常量2一个三角形的底边长10 cm,高h可以任意伸缩,写出面积S随h变化的关系式,并指出其中的常量与变量【答案】S10h5h,其中,S,h是变量,5是常量四、课堂小结变量:在一个变化过程中数值发生变化的量常量:在一个变化过程中数值始终保持不变的量本节课从学生熟知的生活出发,抽象出函数中基本的两个概念:常量与变量,然后通过练习进一步掌握像这样取材于学生生活,结合学生已有的经验进行教学,正是新课标所要求的第2课时函数理解函数的概念,准确写出函数的关系式重点函数的概念,函数解析式的求法难点函数概念的理解一、创设情境,引入新课师:上一节课中的每个问题都涉及两个变量,这两个变量之间有什么联系呢?当其中一个变量确定一个值时,另一个变量是否也随之确定呢?这将是我们这节课要研究的内容二、讲授新课师:观察问题(1)中的表格,时间t和路程s是两个变量,但当t取定一个值时,s也随之确定一个值.t/时12345s/千米60120180240300生:是的,当t1时,s60;当t2时,s120;当t5时,s300.师:问题(2)也是一样的,当早场x150时,收入y1500;当午场x205时,y2050;当晚场x310时,y3100.也就是说售票张数x与票房收入y是两个变量,但当x取定一个值时,票房收入y也就确定一个值师:问题(3)中,当圆的半径r10 cm时,S100 cm2,当r20 cm时,S400 cm2等,也就是说生:也就是说当圆的半径r取定一个值时,面积S也随之确定,并且Sr2.师:问题(4)中,当长为4 m时,面积为4 m2;当长为3 m时,面积S为6 m2;当长x为2.5 m时,面积S为6.25 m2,也就是说生:也就是说当长x取定一个值时,面积S也就随之确定一个值师:当长取定为x m时,面积S等于多少呢?生:Sx(5x)5xx2.师:像这样,在一个变化过程中,如果有两个变量x与y,并且对于x每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y是x的函数前面的几个问题中,哪个是自变量,哪个是函数呢?它们之间的关系如何用式子表示?生1:问题(1)中,时间t是自变量,路程s是t的函数,s60t.生2:问题(2)中,售票数量x是自变量,收入y是x的函数,y10x.生3:问题(3)中,圆的半径r是自变量,面积S是r的函数,Sr2.生4:问题(4)中,长方形的长x是自变量,面积S是x的函数,Sx(5x)师:其实,现实生活中某些函数关系是用图表的形式给出的,比如说:心脏部位的生物电流,y是x的函数吗?生:y是x的函数,因为在心电图里,对于x的每一个确定的值,y都有唯一确定的值和它对应师:很好!再比如说下面是我国的人口统计表,人口数量y是年份x的函数吗?中国人口数统计表年份人口数/亿198410.34198911.06199411.76199912.52201013.71生:是的,因为对于表中每一个确定的年份,都对应着一个确定的人口数教师总结:(再一次叙述函数的定义)像这样,在一个变化过程中,如果有两个变量x与y,并且对于x每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y是x的函数如果当xa时,yb,那么b叫做当自变量xa时的函数值,例如在问题(1)中当t1时的函数值s60,当t2时的函数值s120.在人口统计表中当x1999时,函数值y12.52亿【例】教材第73页例1师:关于自变量的取值范围我们再来看两个题目求下列函数中自变量x的取值范围:y2x25;y;y.生1:对于y2x25,x没有任何限制,x可取任意实数生2:对于y,(x4)必须不等于0式子才有意义,因此x4.生3:对于y,由于二次根式的被开方数大于等于0,因此x3.三、巩固练习下列问题中,哪些是自变量?哪些是自变量的函数?写出用自变量表示函数的式子1改变正方形的边长x,正方形的面积S随之改变【答案】Sx2,x是自变量,S是因变量2秀水村的耕地面积为106 m2,这个村人均占有耕地面积y随这个村人数n的变化而变化【答案】y,n是自变量,y是因变量四、课堂小结本节课我们通过对问题的思考、讨论,认识了自变量、函数及函数值的概念,并通过两个活动,加深了对函数意义的理解,学会了确定函数关系式以及求自变量取值范围的方法,从而提高了运用函数知识解决实际问题的能力本节课引入新课所设计的一些问题都来自于学生生活,函数的概念也是在教师引导下学生自主发现的,这样做能充分调动学生学习的积极性,同时能让学生更加热爱生活,增强学生利用所学知识解决实际问题的意识19.1.2函数的图象第1课时函数的图象(1)准确地运用列表、描点、连线等步骤画出函数的图象重点函数图象的画法,观察分析图象的信息难点函数图象的理解,概括图象中的信息一、创设情境,引入新课下面是一张心电图,其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,变量y随x的变化而变化师:这个问题中的函数关系很难用式子表示,但是可以用图象直观地反映出来事实上即使对能用函数关系式表示的函数,如果用图形表示,则会使函数关系更清晰这就是我们这节课所要学习的内容函数的图象二、讲授新课师:如何表示出正方形的面积S与边长x的函数关系呢?自变量x的取值范围又如何?生:正方形的面积S与边长x的函数关系式为Sx2,其中自变量的取值范围是x0.师:我们如何用画图的方法来表示S与x的关系呢?既然对于自变量x的每一个确定的值,S都有唯一确定的值与其对应,那么我们就列出其中的一部分:x00.511.522.533.54S00.2512.2546.25912.2516把其中x的值作为点的横坐标,S的值作为纵坐标,那么这些对应值就在平面直角坐标系中对应9个点,请大家画出这样的9个点学生画出平面直角坐标系并描出这样的9个点师:这个图形上只有这9个点吗?生:不是的,因为x的取值不止这9个,点也就不止9个师:那么其他的点我们还可以像这样一一地描出来吗?生:不能,因为有无数个点师:其他的点我们怎样画出来呢?生:师:其他的点我们不是一一描出的,而是根据这9个特殊点的位置来确定的,也就是用平滑的曲线把这9个点按从左到右的顺序连接起来教师一边讲一边用平滑的曲线连接这些点,并要求学生跟着连线师:这个图形我们就称作是函数Sx2的图象由于x0,所以原点不在图象上,应用空心圆圈表示教师总结:对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内的这些点组成的图形就是这个函数的图象师:函数图象为我们利用数形结合的思想研究函数提供了便利,另外,函数图象也给我们带来许多信息,大家从下面的图象中可以得到哪些信息?生1:我知道这天的最高气温是8,是中午14点时产生的;最低气温是3,是凌晨4点产生的师:请大家仔细观察,看还能得到哪些信息?如果学生不能回答,提醒学生从气温的变化趋势上考虑生2:我知道从0时至4时,气温呈下降状态;从4时至14时,气温呈上升状态;从14时至24时,气温又呈下降状态师:我们还可以从图象中看出这一天任一时刻的气温大约是多少,另外长期观察这样的气温图象,我们还能掌握气温的变化规律三、例题讲解【例1】教材第76页例2【例2】教材第77页例3四、巩固练习用描点法画出函数y(x0)的图象【答案】略五、课堂小结用描点法画函数图象的步骤:第一步:列表,在自变量取值范围内选定一些值,求出对应的函数值;第二步:描点,在平面直角坐标系中,以自变量的值作为横坐标,相应的函数值作为纵坐标,描出对应各点;第三步:连线,按照自变量从小到大的顺序把所描各点用平滑曲线连接起来本节课让学生自己动手一步一步地按照列表、描点、连线的步骤画出函数的图象,并且在老师的详细讲解下理解了图象的概念这种通过学生自己动手来接受新知识的方法以后还要加强第2课时函数的图象(2)进一步理解并掌握函数的不同表示方法,会发现函数图象所提供的信息重点从图象中提取信息,利用图象解决问题难点利用函数
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号