资源预览内容
第1页 / 共9页
第2页 / 共9页
第3页 / 共9页
第4页 / 共9页
第5页 / 共9页
第6页 / 共9页
第7页 / 共9页
第8页 / 共9页
第9页 / 共9页
亲,该文档总共9页全部预览完了,如果喜欢就下载吧!
资源描述
论船舶噪声的控制提要 船舶噪声对人体和环境的污染和危害已经得到世界各国和相关组织日益广泛的关注。船舶噪声的污染源主要是由于船舶动力装置及其它辅助装置自身振动及吸排气引起的。介绍了船舶的噪声源,以及传播的途径,提出应采取通过声源控制来降低船舶噪声级。前言如今,噪声污染已经成为与空气污染和水污染并列的世界三大主要污染之一,它日益成为人们普遍关心的问题。船舶环境,尤其机舱环境就存在较为严重的噪声污问题,对船员的身体、生活、休息和工作都存在很大的影响,甚至会产生心理和生上的疾病;过强的噪声还会使船上的一些精密仪器设备工作不正常、精度降低、使用寿命缩短。1970年国际劳工组织(ILO)在日内瓦召开的海事特别会议上通过了“关于船员、设备工作区有害噪声规定的建议”,建议各国政府制定限制船舶噪声的规则。目前一些造船和航运国家都制定了船舶噪声标准,作为船舶特殊环境下的健康保护标准。1船舶噪声概述1.1船舶噪声的度量描述噪声可采用两种方法:一是对噪声进行客观量度,即将噪声作为物理扰动,用描述声波客观特性的物理量来反映;二是对噪声进行主观评价,因为噪声涉及人耳的听觉特性,根据听者感觉的刺激来描述。 噪声的客观度量用声压、声强和声功率等物理量表示。声压和声强反映了声场中声的强弱,声功率反映了声源辐射噪声的大小。声压、声强和声功率等物理量的变化范围非常大,可以在六个数量级以上,同时由于人体听觉对声信号强弱刺激的反应不是线性的,而是成对数比例关系,所以实际应用中采用对数标度,以分贝(dB)为单位,即分别为声压级、声强级和声功率级等无量纲的量来度量噪声。 级是物理量相对比值的对数。分贝是级的一种无量纲单位。对于声强、声功率等反映功率和能量的物理量,分贝数等于两个量比值的常用对数乘以10 。如两个声功率值分别为 W1 和 W2 ,则分贝数为 n=101g(W1/W2)。对于声压、质点振动速度等描述声场、电磁场等的物理量,分贝数等于两个量比值的常用对数乘以 20 。当两个声压值分别为 P1 和 P2 时,声压级为 n=201g(P1/P2)。采用级进行噪声计量,可以使数值变化缩小到适当范围,与人耳的感觉接近。 1.1.1声压、声压级 由于声波的存在而产生的压力增值即为声压,单位是帕(Pa)。长期沿用的微巴(bar)也是声压单位,两者关系为 1 帕 =10 微巴。声波在空气中传播时形成压缩和稀疏交替变化,所以压力增值是正负交替变化的。但通常所讲的声压是取均方根值,叫有效声压,故实际上总是正值。 表一 声压和相应的声压级1.1.2声功率、声功率级 声功率是指单位时间内声波通过垂直于传播方向某指定面积的声能量。在噪声检测中,声功率是指声源总声功率,单位是“瓦”,记作 W。 【1】奚旦立.噪声监测系统.环境监测卷(环境工程手册) 1998:176-179(7-4) 1.1.3响度级根据人耳的听觉特性人耳感觉到的声音轻响程度并不仅仅取决于声压级的大小而是声压级与频率的综合结果通常声压级相同而频率不同的声音人听起来往往是不一样的同一声压级的高频声人听起来比低频声响所以在表征一个声音的大小或者研究噪声标准时还必须考虑声音的频率特性为此在声学中又引出一个所谓响度级LL的概念响度级是表征声音响度大小的相对量单位为phon2船舶噪声源船舶的动力机械和辅助机械在运行时发出的令人不舒适的声音。船舶噪声关系到行船的安全,例如船桥上噪声级过高会影响指挥,声呐导流罩内噪声过高会严重影响声呐设备的正常工作并干扰声呐对水下目标(暗礁、沉船、潜艇等)的探测。动力装置的噪声主要包括主机、柴油发电机组、齿轮箱及主辅机的排气管产生的噪声。它是船上最强的噪声源,该噪声的强弱决定了柴油机船的噪声级。它既有进排气系统空气动力噪声,又有运动部件的撞击和主机本身不平衡而产生振动所造成的机械噪声。它是船上最强的噪声源,该噪声的强弱决定了柴油机船的噪声级。2.1动力装置的噪声2.1.1空气动力噪声2.1.1.1由主机进气流动产生的噪声例如功率为5000Kw、燃油消耗率为2009(Kwh)的柴油机,当其过量空气系数为2时,每秒所需空气量约为8Kg,在标准状况下为62m3S,如果进气管直径为035m,则其平均流速可达64ms,再考虑到各缸的进气必然存在间断性和不均匀性,于是在进气管中就会出现空气动力噪声并向四周传播,形成空气动力噪声场。2.1.1.2排气噪声排气噪声主要有排气压力脉动噪声、气流通过气阀等处发生的涡流声、由于边界层气流扰动发生的噪声和排气出口喷流噪声。在多缸柴油机排气噪声的频谱分析中,低频处有一明显的噪声峰值,即低频噪声。这是由于柴油机每一缸气阀开启时,缸内燃气突然高速喷出,气流冲击到排气阀后面的气体上,使其产生压力巨变而形成压力波,从而激发噪声。由于各缸排气阀是在指定的相位上周期性进行,因而这是一种周期性的噪声。柴油机的排气管中还存在气柱的共振噪声,气流喷射噪声、气流与气道壁形成涡流噪声也包含多种频率成分,一旦与共振频率吻合便会激发噪声。另外排气系统中气体的共振在主机与烟囱之间的排气管中形成强烈的压力脉动(驻波),除了引起涡轮鼓风机和排气管系统的振动外,还可在船舶烟囱附近产生振动,在这种情况下,人们会感到噪声如一种遍布全身的“压力”。在桥楼产生高噪声级的噪声源,最常见的就是这种排气噪声。2.1.1.3来自增压器气流的噪声对废气涡轮增压器来讲,空气与压气机叶片之间的相对速度很大,在叶片附近必然会出现大量涡流,在形成强烈而尖厉的振动而发出噪声。2.1.2柴油机的燃烧噪声柴油机的燃油喷人缸内发火燃烧的初期(相当于速燃期),缸内压力上升速度非常快,形成很高的压力波动由火焰中心向四周传播,形成燃烧噪声场。柴油机在较高负荷区工作时发出的低沉噪声就是它产生的,但由于缸套的隔离,噪声级并不太高。该压力波传至缸套时还将引起缸套振动而伴发噪声,但已属于机械噪声。2.1.3金属撞击和摩擦噪声柴油机的配气机构之间、气阀和阀座之间、高压油泵的滚轮和柱塞之间、喷油器的针阀和针阀体之间、活塞金属撞击和摩擦噪声,这些噪声大都属于高频域。当气阀间隙偏大或凸轮形状磨损较多时,噪声级也可达到较高的程度。2.2螺旋桨噪声主要有旋转噪声和空化噪声(当桨叶表面的水分子压力降低到水的汽化压力以下时,产生汽泡,汽泡上升后破裂)。旋转噪声是螺旋桨在不均匀流场中工作引起干扰力(其频率主要决定于桨轴转速乘桨叶数,常称为叶频)和螺旋桨的机械不平衡引起的干扰力(其频率为桨轴转速,常称为轴频)所产生的噪声。螺旋桨出现空化现象以后,船舶水下噪声主要决定于螺旋桨噪声。出现空化时的航速称为临界航速。空化噪声具有连续谱的特征,空化噪声特性与桨叶片形状、桨叶面积、叶距分布等因素有关。在一定转速下,随着螺旋桨叶片旋转产生的涡旋的频率与桨叶固有频率相近时,产生桨鸣。2.3水动力噪声主要是由于高速海流的不规则起伏作用于船体,激起船体的局部振动并向周围媒质(空气、水)辐射的噪声。此外,还有船下附着的空气泡撞击声呐导流罩,湍流中变化的压力引起壳板振动所辐射的噪声(声呐导流罩内的噪声一部分就是因此产生的)等等。2.4辅助机械噪声辅助机械包括各种舱室机械如水泵、油泵、风机、锅炉等,甲板机械如货物装卸设备、锚绞设备以及各种挖泥机等工作机构等。锅炉噪声主要在燃烧室附近较明显,自然通风时空气卷入火焰及可燃物小团粒随机爆裂;人工通风时通风机是主要的噪声源。液压系统的噪声,可来自液体动力引起的冲击力、脉动、气穴声和机械振动及管道、油箱的共呜声等。空调通风系统也是船舶舱室主要噪声源之一。3船舶噪声控制3.1声源控制噪声3.2传输途径控制目前对空气噪声一般采取消声、隔声和吸声处理;而对结构噪声的主要隔声措施是减振、隔振等。3.2.1吸声处理 3.2.2隔声处理 3.2.3消声器处理 消声器是一种控制气流沿管道传播的消声设备。主要安装在进、排气口或气流通过的管道内,在噪声控制中得到广泛应用。按其工作原理,消声器可分成吸收式和反作用式两类。1吸收式消声器。这类消声器是通过吸声材料来降噪的,它利用吸声材料的吸声作用使沿通道传播的噪声不断被吸收的装置。噪声降低量取决于该噪声的频率、管道长度和吸收材料的厚度等。 2反作用式消声器。这是用一个或多个小室来反射和衰减入射的声能,它主要借助于通道截面的突然扩张或设置旁通共振腔使噪声降低的装置。反作用式消声器与吸收式消声器不同,它内部不装任何吸声材料,仅依靠管道截面积的改变,共振腔或旁路管等在声传播过程中,引起声阻抗的改变而产生声能的反射与消耗。各式风机消声器,按气流的压力分为高压、中压和低压等类型,多采用阻性消声器及微穿孔板式等。空压机消声器,主要用于进气消声,加在空气滤清器的前后,有抗性、阻抗组合式及微穿孔板组合式等。鼓风机消声器,多用阻性或阻抗组合式。高压排气放空消声器,多用小孔扩散消声器,阻抗组合式与微穿孔式等。内燃机排气消声器,多采用抗性或微穿孔板组合。3.3受着保护3.4船舶噪声的防护船舶噪声的防护,必须在船舶设计时就应加以考虑,因为在以后阶段,采取减噪措施要受到很大限制。船舶噪声控制问题的解决办法。首先是使用噪声小的主机、辅机和螺旋桨,并且能合理地安置噪声源,使其向船舶传播较少的声音和振动能量。其次是合理进行船舶舱室的布置,把要求噪声小的舱室尽可能离噪声源远一些。由于船舶结构有利于噪声及其振动的传播,因而只靠采用小噪声机器和依赖相应的噪声源及舱室连系的布置,是不可能达到令人满意的声学环境的,还必须在船舶舱室里采用吸声、隔声和隔振设施。 船上的噪声主要来自机舱,而机舱的噪声几乎总是来自主机和辅机的振动,以及将燃气或空气从这些机械中吸入与排出的风机噪声和流动噪声。因此,描述船上噪声降低的变化总是从机舱中噪声的产生和抑制开始的,其降低噪声的途径是:将机器或整个机舱与船上其他部分隔绝开来,增加噪声在结构中的传输损耗,使之传到居住舱室的噪声很小。3.4.1机舱噪声控制对策 机舱是船舶动力装置的集中地,主辅机等各种机器设备发出的噪声,响遍整个舱室,经久不息。在大型低速柴油机为主机的机舱里,其噪声主要是空气噪声;以中速柴油机为主机的机舱,其噪声由强度相当的空气噪声和结构噪声混成;以高速柴油机为主机的机舱里,则主要是结构噪声。因此,必须针对实际情况,综合考虑,对进、排气口,管壁的空气噪声,可首先采用消声器和绝缘层,对于小型机器,可将其全部围起来。加围壁措施是利用声源与围壁内表面间的空层作为减少声振动的介质。这使声辐射仅在声源隔离间内部进行,可有效地减噪。为使声振动隔离良好,其隔离空间必须足够大。同时,围壁应有好的隔声性能,以免空气噪声穿透围壁。为防止围壁内声反射叠加,围壁内表面还应具有吸声性能。在机舱的上下甲板及四周装吸声材料。 对主机的结构噪声,一般通过减振支承来减噪。在小型高速主机上可采用弹性支承,采用橡胶或特殊塑料等,将机器与船体隔开。但对大型主机,目前仍难于实施。此外,对大型主机采取的声振控制措施尚不完善。要从人的方面采取措施防止听力受害。在机舱内设置集中控制室是普遍采取的有效办法。在集中控制室内噪声可控制在75dB以下,就能提供一个较好的工作环境。对于机舱集控室的隔声结构,应同时考虑空气噪声和结构噪声的隔声问题,必须了解两者的具体传播途径,加以妥善隔断才能获得理想的隔声效果。 3.4.2居住舱室噪声控制对策 在进行船舶舱室总布置时,应遵循两个基本原则:1)噪声要集中在规定的区域内,最好在船尾部;2)把对噪声要求高的舱室尽可能远离噪声源的集中区域。在一般情况下,对居住舱室产生影响的几乎全部来自机舱的结构传播噪声。因此,隔声措施是解决居住舱室减噪的主
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号