资源预览内容
第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
第4页 / 共5页
第5页 / 共5页
亲,该文档总共5页全部预览完了,如果喜欢就下载吧!
资源描述
精选优质文档-倾情为你奉上立体几何知识点整理姓名: 一 直线和平面的三种位置关系:1. 线面平行 符号表示: 2. 线面相交 符号表示: 3. 线在面内符号表示: 二 平行关系:1. 线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。方法三:用线面垂直实现。 若,则。方法四:用向量方法: 若向量和向量共线且l、m不重合,则。2. 线面平行:方法一:用线线平行实现。方法二:用面面平行实现。方法三:用平面法向量实现。若为平面的一个法向量,且,则。3. 面面平行:方法一:用线线平行实现。方法二:用线面平行实现。三垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。方法二:用面面垂直实现。2. 面面垂直: 方法一:用线面垂直实现。方法二:计算所成二面角为直角。3. 线线垂直: 方法一:用线面垂直实现。方法二:三垂线定理及其逆定理。方法三:用向量方法: 若向量和向量的数量积为0,则。三 夹角问题。(一) 异面直线所成的角:(1) 范围:(2)求法:方法一:定义法。步骤1:平移,使它们相交,找到夹角。步骤2:解三角形求出角。(常用到余弦定理)余弦定理:(计算结果可能是其补角)方法二:向量法。转化为向量的夹角(计算结果可能是其补角):(二) 线面角(1)定义:直线l上任取一点P(交点除外),作PO于O,连结AO,则AO为斜线PA在面内的射影,(图中)为直线l与面所成的角。(2)范围: 当时,或当时,(3)求法:方法一:定义法。步骤1:作出线面角,并证明。步骤2:解三角形,求出线面角。方法二:向量法(为平面的一个法向量)。(三) 二面角及其平面角(1)定义:在棱l上取一点P,两个半平面内分别作l的垂线(射线)m、n,则射线m和n的夹角为二面角l的平面角。(2)范围: (3)求法:方法一:定义法。步骤1:作出二面角的平面角(三垂线定理),并证明。步骤2:解三角形,求出二面角的平面角。方法二:截面法。步骤1:如图,若平面POA同时垂直于平面,则交线(射线)AP和AO的夹角就是二面角。步骤2:解三角形,求出二面角。方法三:坐标法(计算结果可能与二面角互补)。步骤一:计算步骤二:判断与的关系,可能相等或者互补。四 距离问题。1点面距。方法一:几何法。步骤1:过点P作PO于O,线段PO即为所求。步骤2:计算线段PO的长度。(直接解三角形;等体积法和等面积法;换点法)方法二:坐标法。2线面距、面面距均可转化为点面距。3异面直线之间的距离方法一:转化为线面距离。如图,m和n为两条异面直线,且,则异面直线m和n之间的距离可转化为直线m与平面之间的距离。方法二:直接计算公垂线段的长度。方法三:公式法。如图,AD是异面直线m和n的公垂线段,则异面直线m和n之间的距离为:五 空间向量(一)空间向量基本定理若向量为空间中不共面的三个向量,则对空间中任意一个向量,都存在唯一的有序实数对,使得。(二) 三点共线,四点共面问题1. A,B,C三点共线,且当时,A是线段BC的 A,B,C三点共线2. A,B,C,D四点共面,且当时,A是BCD的 A,B,C,D四点共面(三)空间向量的坐标运算1. 已知空间中A、B两点的坐标分别为:, 则: ; 2. 若空间中的向量,则 六 常见几何体的特征及运算(一) 长方体1. 长方体的对角线相等且互相平分。2. 若长方体的一条对角线与相邻的三条棱所成的角分别为,则若长方体的一条对角线与相邻的三个面所成的角分别为,则3.若长方体的长宽高分别为a、b、c,则体对角线长为 ,表面积为 ,体积为 。(二) 正棱锥:底面是正多边形且顶点在底面的射影在底面中心。(三) 正棱柱:底面是正多边形的直棱柱。(四) 正多面体:每个面有相同边数的正多边形,且每个顶点为端点有相同棱数的凸多面体。(只有五种正多面体)(五) 棱锥的性质:平行于底面的的截面与底面相似,且面积比等于顶点到截面的距离与棱锥的高的平方比。正棱锥的性质:各侧棱相等,各侧面都是全等的等腰三角形。(六) 体积: (七) 球1.定义:到定点的距离等于定长的点的集合叫球面。2. 设球半径为R,小圆的半径为r,小圆圆心为O1,球心O到小圆的距离为d,则它们三者之间的数量关系是 。3. 球面距离:经过球面上两点的大圆在这两点间的一段劣弧的长度。4.球的表面积公式: 体积公式: 专心-专注-专业
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号