资源预览内容
第1页 / 共16页
第2页 / 共16页
第3页 / 共16页
第4页 / 共16页
第5页 / 共16页
第6页 / 共16页
第7页 / 共16页
第8页 / 共16页
第9页 / 共16页
第10页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第一部分函数的应用知识点整理第三章 函数的应用方程的根与函数的零点1、函数零点的概念:对于函数 ,把使成立的实数叫做函数的零点。2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点3、函数零点的求法:(1)(代数法)求方程 的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点4、二次函数的零点:(1)0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点(2)0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点(3)0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点第二部分练习题含答案解析第三章 函数的应用一、选择题(每小题5分,共60分)1二次函数f(x)2x2bx3(bR)的零点个数是()A0B1C2D4解析:b2423b2240,函数图象与x轴有两个不同的交点,从而函数有2个零点答案:C2函数y1的零点是()A(1,0)B1C1D0解析:令10,得x1,即为函数零点答案:B3下列给出的四个函数f(x)的图象中能使函数yf(x)1没有零点的是()解析:把yf(x)的图象向下平移1个单位后,只有C图中图象与x轴无交点答案:C4若函数yf(x)在区间(2,2)上的图象是连续不断的曲线,且方程f(x)0在(2,2)上仅有一个实数根,则f(1)f(1)的值()A大于0B小于0C无法判断D等于零解析:由题意不能断定零点在区间(1,1)内部还是外部答案:C5函数f(x)ex的零点所在的区间是()A(0,)B(,1)C(1,)D(,2)解析:f()20,f()f(1)0,f(x)的零点在区间(,1)内答案:B6方程logx2x1的实根个数是()A0B1C2D无穷多个解析:方程logx2x1的实根个数只有一个,可以画出f(x)logx及g(x)2x1的图象,两曲线仅一个交点,故应选B.答案:B7某产品的总成本y(万元)与产量x(台)之间的函数关系式是y0.1x211x3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x等于()A55台B120台C150台D180台解析:设产量为x台,利润为S万元,则S25xy25x(0.1x211x3000)0.1x236x30000.1(x180)2240,则当x180时,生产者的利润取得最大值答案:D8已知是函数f(x)的一个零点,且x10Bf(x1)f(x2)8.则水费y1622(x8)4x1620,x9.答案:D10某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C与时间t(年)的函数关系图象为()答案:A11函数f(x)|x26x8|k只有两个零点,则()Ak0Bk1C0k1,或k0解析:令y1|x26x8|,y2k,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D.答案:D12利用计算器,算出自变量和函数值的对应值如下表:x0.20.61.01.41.82.22.63.03.4y2x1.1491.5162.02.6393.4824.5956.0638.010.556yx20.040.361.01.963.244.846.769.011.56那么方程2xx2的一个根所在区间为()A(0.6,1.0)B(1.4,1.8)C(1.8,2.2)D(2.6,3.0)解析:设f(x)2xx2,由表格观察出x1.8时,2xx2,即f(1.8)0;在x2.2时,2xx2,即f(2.2)0.综上知f(1.8)f(2.2)0,所以方程2xx2的一个根位于区间(1.8,2.2)内答案:C第卷(非选择题,共90分)二、填空题(每小题5分,共20分)13用二分法求方程x32x50在区间(2,4)上的实数根时,取中点x13,则下一个有根区间是_解析:设f(x)x32x5,则f(2)0,f(4)0,有f(2)f(3)0,即0x.答案:yx(l2x)(0x0)的近似解(精确度0.1)解:令f(x)x22x5(x0)f(1)2,f(2)3,函数f(x)的正零点在区间(1,2)内取(1,2)中点x11.5,f(1.5)0.取(1,1.5)中点x21.25,f(1.25)0.取(1.25,1.5)中点x31.375,f(1.375)0.取(1.375,1.5)中点x41.4375,f(1.4375)0.取(1.4375,1.5)|1.51.4375|0.06250)的近似解为x1.5(或1.4375)19(12分)要挖一个面积为800 m2的矩形鱼池,并在四周修出宽分别为1 m,2 m的小路,试求鱼池与路的占地总面积的最小值解:设所建矩形鱼池的长为x m,则宽为m,于是鱼池与路的占地面积为y(x2)(4)8084x8084(x)8084()240当,即x20时,y取最小值为968 m2.答:鱼池与路的占地最小面积是968 m2.20(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P和Q(万元),这两项利润与投入的资金x(万元)的关系是P,Q,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x万元,获得总利润y(万元),写出y关于x的函数关系式及其定义域解:投入养殖加工生产业为60x万元由题意可得,yPQ,由60x0得x60,0x60,即函数的定义域是0,6021(12分)已知某种产品的数量x(百件)与其成本y(千元)之间的函数关系可以近似用yax2bxc表示,其中a,b,c为待定常数,今有实际统计数据如下表:产品数量x(百件)61020成本合计y(千元)104160370(1)试确定成本函数yf(x);(2)已知每件这种产品的销售价为200元,求利润函数pp(x);(3)据利润函数pp(x)确定盈亏转折时的产品数量(即产品数量等于多少时,能扭亏为盈或由盈转亏)解:(1)将表格中相关数据代入yax2bxc,得解得a,b6,c50.所以yf(x)x26x50(x0)(2)pp(x)x214x50(x0)(3)令p(x)0,即x214x500,解得x144,即x14.2,x223.8,故4.2x0;x23.8时,p(x)0,所以当产品数量为420件时,能扭亏为盈;当产品数量为2380件时由盈变亏22(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长已知2000年为第一年,头4年年产量f(x)(万件)如表所示:x1234f(x)4.005.587.008.44(1)画出20002003年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之(3)2006年(即x7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?解:图2(1)散点图如图2:(2)设f(x)axb.由已知得,解得a,b,f(x)x.检验:f(2)5.5,|5.585.5|0.080.1;f(4)8.5,|8.448.5|0.060.1.模型f(x)x能基本反映产量变化(3)f(7)713,由题意知,2006年的年产量约为1370%9.1(万件),即2006年的年产量应约为9.1万件全册书综合练习题及解析一、选择题(每小题5分,共60分)1集合A1,2,B1,2,3,C2,3,4,则(AB)C()A1,2,3B1,2,4C2,3,4D1,2,3,4解析
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号