资源预览内容
第1页 / 共16页
第2页 / 共16页
第3页 / 共16页
第4页 / 共16页
第5页 / 共16页
第6页 / 共16页
第7页 / 共16页
第8页 / 共16页
第9页 / 共16页
第10页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
精选高中模拟试卷婺源县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知命题p:xR,cosxa,下列a的取值能使“p”是真命题的是( )A1B0C1D22 若不等式1ab2,2a+b4,则4a2b的取值范围是( )A5,10B(5,10)C3,12D(3,12)3 O为坐标原点,F为抛物线的焦点,P是抛物线C上一点,若|PF|=4,则POF的面积为( )A1BCD24 双曲线的焦点与椭圆的焦点重合,则m的值等于( )A12B20CD5 已知向量与的夹角为60,|=2,|=6,则2在方向上的投影为( )A1B2C3D46 函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=( )Aex+1Bex1Cex+1Dex17 函数f(x)=有且只有一个零点时,a的取值范围是( )Aa0B0aCa1Da0或a18 已知的终边过点,则等于( )A B C-5 D59 若复数的实部与虚部相等,则实数等于( )(A) ( B ) (C) (D) 10若命题“pq”为假,且“q”为假,则( )A“pq”为假Bp假Cp真D不能判断q的真假11已知数列an满足a1=1,a2=2,an+2=(1+cos2)an+sin2,则该数列的前10项和为( )A89B76C77D3512如果执行如图所示的程序框图,那么输出的a=( )A2BC1D以上都不正确二、填空题13(x)6的展开式的常数项是(应用数字作答)14若“xa”是“x22x30”的充分不必要条件,则a的取值范围为15抛物线的焦点为,经过其准线与轴的交点的直线与抛物线切于点,则外接圆的标准方程为_.16【南通中学2018届高三10月月考】已知函数,若曲线在点处的切线经过圆的圆心,则实数的值为_17计算sin43cos13cos43sin13的值为18已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 三、解答题19如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180)到ABEF的位置()求证:CE平面ADF;()若K为线段BE上异于B,E的点,CE=2设直线AK与平面BDF所成角为,当3045时,求BK的取值范围20设函数f(x)=1+(1+a)xx2x3,其中a0()讨论f(x)在其定义域上的单调性;()当x时,求f(x)取得最大值和最小值时的x的值21已知数列an的前n项和为Sn,首项为b,若存在非零常数a,使得(1a)Sn=ban+1对一切nN*都成立()求数列an的通项公式;()问是否存在一组非零常数a,b,使得Sn成等比数列?若存在,求出常数a,b的值,若不存在,请说明理由22(本小题满分10分)如图O经过ABC的点B,C与AB交于E,与AC交于F,且AEAF.(1)求证EFBC;(2)过E作O的切线交AC于D,若B60,EBEF2,求ED的长23已知函数(1)令,讨论的单调区间;(2)若,正实数满足,证明24已知函数f(x)=x2ax+(a1)lnx(a1)() 讨论函数f(x)的单调性;() 若a=2,数列an满足an+1=f(an)(1)若首项a1=10,证明数列an为递增数列;(2)若首项为正整数,且数列an为递增数列,求首项a1的最小值 婺源县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:命题p:xR,cosxa,则a1下列a的取值能使“p”是真命题的是a=2故选;D2 【答案】A【解析】解:令4a2b=x(ab)+y(a+b)即解得:x=3,y=1即4a2b=3(ab)+(a+b)1ab2,2a+b4,33(ab)65(ab)+3(a+b)10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a2b=x(ab)+y(a+b),并求出满足条件的x,y,是解答的关键3 【答案】C【解析】解:由抛物线方程得准线方程为:y=1,焦点F(0,1),又P为C上一点,|PF|=4,可得yP=3,代入抛物线方程得:|xP|=2,SPOF=|0F|xP|=故选:C4 【答案】A【解析】解:椭圆的焦点为(4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12故选:A5 【答案】A【解析】解:向量与的夹角为60,|=2,|=6,(2)=2=22262cos60=2,2在方向上的投影为=故选:A【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目6 【答案】D【解析】解:函数y=ex的图象关于y轴对称的图象的函数解析式为y=ex,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex的图象关于y轴对称,所以函数f(x)的解析式为y=e(x+1)=ex1即f(x)=ex1故选D7 【答案】D【解析】解:f(1)=lg1=0,当x0时,函数f(x)没有零点,故2x+a0或2x+a0在(,0上恒成立,即a2x,或a2x在(,0上恒成立,故a1或a0;故选D【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题8 【答案】B【解析】考点:三角恒等变换9 【答案】C 【解析】 i,因为实部与虚部相等,所以2b12b,即b.故选C.10【答案】B【解析】解:命题“pq”为假,且“q”为假,q为真,p为假;则pq为真,故选B【点评】本题考查了复合命题的真假性的判断,属于基础题11【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2)a2+sin2=2a2=4一般地,当n=2k1(kN*)时,a2k+1=1+cos2a2k1+sin2=a2k1+1,即a2k+1a2k1=1所以数列a2k1是首项为1、公差为1的等差数列,因此a2k1=k当n=2k(kN*)时,a2k+2=(1+cos2)a2k+sin2=2a2k所以数列a2k是首项为2、公比为2的等比数列,因此a2k=2k该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C12【答案】 B【解析】解:模拟执行程序,可得a=2,n=1执行循环体,a=,n=3满足条件n2016,执行循环体,a=1,n=5满足条件n2016,执行循环体,a=2,n=7满足条件n2016,执行循环体,a=,n=9由于2015=3671+2,可得:n=2015,满足条件n2016,执行循环体,a=,n=2017不满足条件n2016,退出循环,输出a的值为故选:B二、填空题13【答案】160 【解析】解:由于(x)6展开式的通项公式为 Tr+1=(2)rx62r,令62r=0,求得r=3,可得(x)6展开式的常数项为8=160,故答案为:160【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题14【答案】a1 【解析】解:由x22x30得x3或x1,若“xa”是“x22x30”的充分不必要条件,则a1,故答案为:a1【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键15【答案】或【解析】试题分析:由题意知,设,由,则切线方程为,代入得,则,可得,则外接圆以为直径,则或.故本题答案填或1考点:1.圆的标准方程;2.抛物线的标准方程与几何性质16【答案】【解析】结合函数的解析式可得:,对函数求导可得:,故切线的斜率为,则切线方程为:,即,圆:的圆心为,则:.17【答案】 【解析】解:sin43cos13cos43sin13=sin(4313)=sin30=,故答案为18【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键三、解答题19【答案】 【解析】解:()证明:正方形ABCD中,CDBA,正方形ABEF中,EFBAEFCD,四边形EFDC为平行四边形,CEDF又DF平面ADF,CE平面ADF,CE平面ADF ()解:BE=BC=2,CE=,CE2=BC2+BE2BCE为直角三角形,BEBC,又BEBA,BCBA=B,BC、BA平面ABCD,BE平面ABCD 以B为原点,、的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系,则B(0,0,0),F(0,2,2),A(0,2,0),=(2,2,0),=(0,2,2)设K(0,0,m),平面BDF的一个法向量为=(x,y,z)由,得可取=(1,1,1),又=(0,2,m),于是sin=,3045,即结合
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号