资源预览内容
第1页 / 共23页
第2页 / 共23页
第3页 / 共23页
第4页 / 共23页
第5页 / 共23页
第6页 / 共23页
第7页 / 共23页
第8页 / 共23页
第9页 / 共23页
第10页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
绝密绝密启用前启用前数学考试数学考试全卷满分全卷满分 150 分,考试时间分,考试时间 120 分钟分钟注意事项:注意事项:1答题前答题前,先将自己的姓名先将自己的姓名、准考证号填写在试卷和答题卡上准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上并将条形码粘贴在答题卡上的指定位置的指定位置2请按题号顺序在答题卡上各题目的答题区域内作答请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷写在试卷、草稿纸和答题卡上的非答草稿纸和答题卡上的非答题区域均无效题区域均无效3选择题用选择题用 2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚作答;字体工整,笔迹清楚4考试结束后,请将试卷和答题卡一并上交考试结束后,请将试卷和答题卡一并上交5本卷主要考查内容:高考范围本卷主要考查内容:高考范围一一、选择题选择题:本题共本题共 8 小题小题,每小题每小题 5 分分,共共 40 分分,在每小题给出的四个选项中在每小题给出的四个选项中,只有一项只有一项是符合题目要求的是符合题目要求的1.已知U为整数集,2Z4Axx,则UA()A.0,1B.1,0,1,2C.0,1,2D.2,1,0,1,22.若iizz,则 z z()A.12B.1C.2D.43.样本数据 16,20,21,24,22,14,18,28 的75%分位数为()A.16B.17C.23D.244.在ABC中,2sin3sinAB,2ABAC,则cosC()A.12B.12C.14D.145.60C是一种由 60 个碳原子构成的分子,形似足球,又名足球烯,其分子结构由 12 个正五边形和 20 个正六边形组成 如图,将足球烯上的一个正六边形和相邻正五边形展开放平,若正多边形的边长为 1,,A B C为正多边形的顶点,则 AB AC()A.1B.2C.3D.46.早在西元前 6 世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在论音乐中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同若221ab,则4141ab的最小值为()A.254B.916C.94D.25167.已知函数 22e2eRxxf xxaaa的最小值为 g a,则 g a的最小值为()A.eB.1eC.0D.18.数列 na满足112cos2nnnnaa,若11a,则2024a()A.5053B.5053C.5063D.5063二、选择题:本题共二、选择题:本题共 3 小题,每小题小题,每小题 6 分,共分,共 18 分如果正确选项为分如果正确选项为 2 个,则选对一个得个,则选对一个得 3分,全部选对得分,全部选对得 6 分;如果正确选项有分;如果正确选项有 3 个,则选对一个得个,则选对一个得 2 分,选对两个得分,选对两个得 4 分,全部选分,全部选对得对得 6 分有选错的得分有选错的得 0 分分9.已知函数 5sincos36fxxx,则()A.23fx为偶函数B.曲线 yf x的对称中心为,0,3kkZC.f x在区间 4,33上单调递减D.f x在区间 4,33上有一条对称轴10.已知O为坐标原点,抛物线2:20C ypx p的焦点在直线:10l xy 上,且l交C于,A B两点,D为C上异于,A B的一点,则()A.2p B.4OA OB C.8AB D.有且仅有 3 个点D,使得ABD的面积为4 211.已知函数()f x的定义域为R,设()g x为()f x的导函数,()()()(1)f xyf xyf x fy,(1)0f,(2)0f,则()A.12fB.10gC.()g x是奇函数D.(1)(2023)0f xf x三、填空题:本题共三、填空题:本题共 3 小题,每小题小题,每小题 5 分,共分,共 15 分分12.已知O为坐标原点,()1,0A,B为圆22:21Mxy上一点且在第一象限,1AB,则直线OB的方程为_13.某工厂为学校运动会定制奖杯,奖杯的剖面图形如图所示,已知奖杯的底座是由金属片围成的空心圆台,圆台上下底面半径分别为 1,2,将一个表面积为8的水晶球放置于圆台底座上,即得该奖杯,已知空心圆台(厚度不计)围成的体积为7,则该奖杯的高(即水晶球最高点到圆台下底面的距离)为_14.设A为双曲线2222:10,0 xyabab的一个实轴顶点,,B C为的渐近线上的两点,满足4BCAC,ACa,则的渐近线方程是_四、解答题:本题共四、解答题:本题共 5 小题,共小题,共 77 分解答应写出必要的文字说明、证明过程及演算步骤分解答应写出必要的文字说明、证明过程及演算步骤15.已知不透明的袋子中装有 6 个大小质地完全相同的小球,其中 2 个白球,4 个黑球,从中无放回地随机取球,每次取一个(1)求前两次取出的球颜色不同的概率;(2)当白球被全部取出时,停止取球,记取球次数为随机变量X,求X的分布列以及数学期望16.如图,在四棱锥PABCD中,CD 平面ADP,ABCD,24CDAB,ADP是等边三角形,E为DP的中点(1)证明:AE平面PDC;(2)若6PA,求平面PBC与平面ABE夹角的余弦值17.设数列 na的前n项和为,321nnnSSa(1)求数列 na的通项公式;(2)在数列 na的ka和1ka项之间插入k个数,使得这2k 个数成等差数列,其中1,2,kn,将所有插入的数组成新数列 nb,设nT为数列 nb的前n项和,求36T18.已知函数 1ln,Rxf xa xax(1)当2a 时,求曲线 yf x在点 1,1f处的切线方程;(2)当0 x 时,证明:e ln1ecos0 xxxx19.已知椭圆2222:10 xyCabab的左顶点为A,过A且斜率为0k k 的直线交y轴于点M,交C的另一点为P(1)若1,23kMAPM,求C的离心率;(2)点Q在C上,若PAQA,且tan8PQA,求k的取值范围绝密绝密启用前启用前数学考试数学考试全卷满分全卷满分 150 分,考试时间分,考试时间 120 分钟分钟注意事项:注意事项:1答题前答题前,先将自己的姓名先将自己的姓名、准考证号填写在试卷和答题卡上准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上并将条形码粘贴在答题卡上的指定位置的指定位置2请按题号顺序在答题卡上各题目的答题区域内作答请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷写在试卷、草稿纸和答题卡上的非答草稿纸和答题卡上的非答题区域均无效题区域均无效3选择题用选择题用 2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚作答;字体工整,笔迹清楚4考试结束后,请将试卷和答题卡一并上交考试结束后,请将试卷和答题卡一并上交5本卷主要考查内容:高考范围本卷主要考查内容:高考范围一一、选择题选择题:本题共本题共 8 小题小题,每小题每小题 5 分分,共共 40 分分,在每小题给出的四个选项中在每小题给出的四个选项中,只有一项只有一项是符合题目要求的是符合题目要求的1.已知U为整数集,2Z4Axx,则UA()A.0,1B.1,0,1,2C.0,1,2D.2,1,0,1,2【答案】D【解析】【分析】运用集合补集运算及解一元二次不等式即可.【详解】因为2Z42,1,0,1,2UAxx.故选:D2.若iizz,则 z z()A.12B.1C.2D.4【答案】A【解析】【分析】借助复数的运算法则及共轭复数的概念计算即可得.【详解】i i1i1 ii 1i 1 i12z,1 i 1 i1222z z.故选:A3.样本数据 16,20,21,24,22,14,18,28 的75%分位数为()A.16B.17C.23D.24【答案】C【解析】【分析】先将数据排序后结合百分位数公式计算即可.【详解】由小到大排列为 14,16,18,20,21,22,24,28,一共有 8 个数据,8 0.756,所以75%分位数为12224232.故选:C4.在ABC中,2sin3sinAB,2ABAC,则cosC()A.12B.12C.14D.14【答案】D【解析】【分析】结合正弦定理可得23BCAC,再结合余弦定理可得cosC.【详解】由正弦定理可得,23BCAC,又2ABAC,所以:2:3:4AC BC AB,不妨设2,3,4ACk BCk ABk,所以由余弦定理得22249161cos2 234kkkCkk 故选:D5.60C是一种由 60 个碳原子构成的分子,形似足球,又名足球烯,其分子结构由 12 个正五边形和 20 个正六边形组成 如图,将足球烯上的一个正六边形和相邻正五边形展开放平,若正多边形的边长为 1,,A B C为正多边形的顶点,则 AB AC()A.1B.2C.3D.4【答案】B【解析】【分析】运用数量积定义计算即可.【详解】如图所示,连接BA,BC,由对称性可知,BABC,取AC的中点H,则ACBH,12AHAC,又因为正六边形的边长为 1,所以2AC,所以cos2AB ACACABBACACAH ,故选:B6.早在西元前 6 世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在论音乐中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同若221ab,则4141ab的最小值为()A.254B.916C.94D.2516【答案】D【解析】【分 析】令2am,2bn,结 合 基 本 不 等 式 可 得104mn,化 简4141ab可 得241 4122abmnmn,转化为求关于mn的二次函数在区间1(0,4上的最小值即可.【详解】不妨设2am,2bn,则0m,0n,所以2mnmn,当且仅当mn时取等号,即104mn,当且仅当mn时取等号,所以 222222241 4111121abmnmnmnmnmnmn 222211mnmnmn,(104mn)所以当14mn 时,222mnmn取得最小值2516,故选:D7.已知函数 22e2eRxxf xxaaa的最小值为 g a,则 g a的最小值为()A.eB.1eC.0D.1【答案】B【解析】【分析】由二次函数的性质可知 exf xx,令 exP xx,运用导数可求得 P x的最小值,进而可得结果.【详解】因为 222e2eeeexxxxxf xxaaaxx,令 exP xx,则 e1xP xx,当,1x 时,0P x,()P x单调递减,当1,x 时,0P x,()P x单调递增,11eP xP,1eexf xx,故选:B8.数列 na满足112cos2nnnnaa,若11a,则2024a()A.5053B.5053C.5063D.5063【答案】A【解析】【分析】利用累乘法513aa,则得到规律41433kkaa,则求出50620253a,根据202520243aa即可求出2024a.【详解】12112cos12aa ,23212cos1aa ,343312cos12aa ,45412cos23aa,所以53524112343aaaaaaaaaa,同理可得,953aa,41433kkaa,因为20251 4 506 ,所以5065062025133aa,则50620253a,因为2024202520241cos10123aa,所以50520243a,故选:A【点睛】关键点点睛:本题的关键是得到41433kkaa,则得到50620253a,最后根据202520243aa即可得到答案.二、选择题:本题共二、选择题:本题共 3 小题,每小题小题,每小题 6 分,共分,共 18 分如果正确选项为分如果正确选项为 2 个,则选对一个得个,则选对一个得 3分,全部选对得分,全部选对得 6 分;如果正确选项有分;如果正确选项有 3 个,则选对一个得个,则选对一个得 2 分,选对两个得分,选对两个得 4 分,全部选分,全
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号