资源预览内容
第1页 / 共11页
第2页 / 共11页
第3页 / 共11页
第4页 / 共11页
第5页 / 共11页
第6页 / 共11页
第7页 / 共11页
第8页 / 共11页
第9页 / 共11页
第10页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
北师大版初二数学定理知识点汇总( 上册 ) 第一章勾股定理直角三角形两直角边的平和等于斜边的平方。即:222cba(由直角三角形得到边的关系)如果三角形的三边长a,b, c满足222cba,那么这个三角形是直角三角形。满足条件222cba的三个正整数,称为勾股数。常见的勾股数组有:(3,4,5);( 6,8,10);( 5,12,13);( 8,15,17);( 7,24,25);( 20,21,29);( 9,40,41);(这些勾股数组的倍数仍是勾股数)第二章实数算术平方根:一般地,如果一个正数x的平方等于 a,即 x2=a,那么正数 x叫做 a的算术平方根,记作a。0的算术平方根为 0;从定义可知,只有当a0时,a 才有算术平方根。平方根:一般地,如果一个数x的平方根等于 a,即 x2=a,那么数 x就叫做 a的平方根。正数有两个平方根(一正一负);0只有一个平方根,就是它本身;负数没有平方根。正数的立方根是正数;0的立方根是 0;负数的立方根是负数。)0, 0(0,0babababaabba第三章图形的平移与旋转平移:在平面内,将一个图形沿某个方向移动一定距离,这样的图形运动称为平移。平移的基本性质:经过平移,对应线段、对应角分别相等;对应点所连的线段平行且相等。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 11 页旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这个定点叫旋转中心,转动的角度叫旋转角。旋转的性质:旋转后的图形与原图形的大小和形状相同;旋转前后两个图形的对应点到旋转中心的距离相等;对应点到旋转中心的连线所成的角度彼此相等。(例:如图所示,点D、 E 、F分别为点 A、B、C的对应点,经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。)第四章四平边形性质探索平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。平行四边形的性质:平行四边形的对边相等, 对角相等 , 对角线互相平分。平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。两组对边分别相等的四边形是平行四边形。一组对边平行且相等的四边形是平行四边形。两条对角线互相平分的四边形是平行四边形。平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。菱形的定义:一组邻边相等的平行四边形叫做菱形。菱形的性质:具有平行四边形的性质, 且四条边都相等, 两条对角线互相垂直平分, 每一条对角线平分一组对角。菱形是轴对称图形,每条对角线所在的直线都是对称轴。菱形的判别方法:一组邻边相等的平行四边形是菱形。对角线互相垂直的平行四边形是菱形。四条边都相等的四边形是菱形。矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)矩形的判定:有一个内角是直角的平行四边形叫矩形( 根据定义 ) 。对角线相等的平行四边形是矩形。四个角都相等的四边形是矩形。推论:直角三角形斜边上的中线等于斜边的一半。正方形的定义:一组邻边相等的矩形叫做正方形。正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 11 页正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。正方形、 矩形、菱形和平行边形四者之间的关系( 如图 3所示 ) :梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。两条腰相等的梯形叫做等腰梯形。一条腰和底垂直的梯形叫做直角梯形。等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形。多边形内角和:n边形的内角和等于(n2)180多边形的外角和都等于360在平面内,一个图形绕某个点旋转180,如果旋转前后的图形互相重合,那么这个图开叫做中心对称图形。中心对称图形上的每一对对应点所连成的线段被对称中心平分。第五章位置的确定平面直角坐标系概念:在平面内, 两条互相垂直且有公共原点的数轴组成平面直角坐标系,水平的数轴叫 x轴或横轴;铅垂的数轴叫 y轴或纵轴,两数轴的交点O 称为原点。点的坐标:在平面内一点P,过 P向x轴、 y轴分别作垂线,垂足在x轴、 y轴上对应的数 a、b分别叫 P 点的横坐标和纵坐标,则有序实数对(a、 b)叫做 P点的坐标。在直角坐标系中如何根据点的坐标,找出这个点(如图4所示),方法是由P(a、b),在 x轴上找到坐标为a的点 A,过A作x轴的垂线,再在y轴上找到坐标为b的点 B,过 B作y轴的垂线,两垂线的交点即为所找的P点。如何根据已知条件建立适当的直角坐标系?根据已知条件建立坐标系的要求是尽量使计算方便,一般地没有明确的方法,但有以下几条常用的方法:以某已知点为原点,使它坐标为(0,0 );以图形中某线段所在直线为x轴(或 y轴);以已知线段中点为原点;以两直线交点为原点;利用图形的轴对称性以对称轴为y轴等。图形“纵横向伸缩”的变化规律: A、将图形上各个点的坐标的纵坐标不变,而横坐标分别变成原来的n倍时,所得的图形比原来的图形在横向:当n1时,伸长为原来的n倍;当 0n1时, 伸长为原来的n倍;当 0n0)或向左 (a0)或向下 (b0),所得的图形与原图形相比,形状不变;当n1时,对应线段大小扩大到原来的n倍;当 0n0时,y 随x的增大而增大; 当k0时,y 随x的增大而减小。第七章二元一次方程组含有两个未知数, 并且所含未知数的项的次数都是1的方程叫做二元一次方程。两个一次方程所组成的一组方程叫做二元一次方程组。解二元一次方程组:代入消元法;加减消元法(无论是代入消元法还是加减消元法,其目的都是将“二元一次方程”变为“一元一次方程”,所谓之“消元”)在利用方程来解应用题时,主要分为两个步骤:设未知数(在设未知数时,大多数情况只要设问题为x或y;但也有时也须根据已知条件及等量关系等诸多方面考虑);寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。处理问题的过程可以进一步概括为:解答检验求解组方程抽象分析问题)(第八章数据的代表加权平均数:一组数据nxxx,21的权分加为nwww,21,则称nnnwwwwxwxwx212211为这 n个数的321000.0kbbb精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 11 页加权平均数。(如:对某同学的数学、语文、科学三科的考查,成绩分别为72,50,88,而三项成绩的“权”分别为4、 3、1,则加权平均数为:134188350472)一般地, n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。一组数据中出现次数最多的那个数据叫做这组数据的众数。众数着眼于对各数据出现次数的考察,中位数首先要将数据按大小顺序排列,而且要注意当数据个数为奇数时,中间的那个数据就是中位数;当数据个数为偶数时,居于中间的两个数据的平均数才是中位数,特别要注意一组数据的平均数和中位数是唯一的,但众数则不一定是唯一的。北师大版初二数学知识点汇总(下册)第一章一元一次不等式和一元一次不等式组一. 不等关系1. 一般地 , 用符号“ ”(或“” )连接的式子叫做不等式 . 2. 要区别方程与不等式 : 方程表示的是相等的关系 ; 不等式表示的是不相等的关系. 3. 准确“翻译”不等式 , 正确理解“非负数”、“不小于”等数学术语. 非负数 大于等于 0(0) 0 和正数 不小于 0 非正数 小于等于 0(0) 0 和负数 不大于 0 二. 不等式的基本性质1. 掌握不等式的基本性质 , 并会灵活运用 : (1) 不等式的两边加上 ( 或减去 )同一个整式 , 不等号的方向不变 , 即: 如果 ab,那么 a+cb+c, a-cb-c. (2) 不等式的两边都乘以 ( 或除以 ) 同一个正数 , 不等号的方向不变 , 即如果 ab,并且 c0, 那么 acbc, cbca. (3) 不等式的两边都乘以 ( 或除以 ) 同一个负数 , 不等号的方向改变 , 即: 如果 ab,并且 c0, 那么 acb,那么 a-b 是正数 ; 反过来 , 如果 a-b 是正数, 那么 ab; 如果 a=b,那么 a-b 等于 0; 反过来 , 如果 a-b 等于 0, 那么 a=b; 如果 ab,那么 a-b 是负数 ; 反过来 , 如果 a-b 是正数, 那么 ab a-b0 a=b a-b=0 ab a-bb(或 ax0时, 解为abx;当 a=0时, 且 b0,则 x 取一切实数 ; 当 a=0时, 且 b0, 则无解;当 a0时, 解为abx;5. 不等式应用的探索 ( 利用不等式解决实际问题 ) 列不等式解应用题基本步骤与列方程解应用题相类似, 即: 审: 认真审题 , 找出题中的不等关系 , 要抓住题中的关键字眼 , 如“大于”、 “小于”、 “不大于” 、“不小于”等含义 ;设: 设出适当的未知数 ;列: 根据题中的不等关系 , 列出不等式 ;解: 解出所列的不等式的解集 ; 答: 写出答案 , 并检验答案是否符合题意 . 五. 一元一次不等式与一次函数六. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组, 叫做一元一次不等式组 . 2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集. 如果这些不等式的解集无公共部分 , 就说这个不等式组无解 . 几个不等式解集的公共部分, 通常是利用数轴来确定 . 3. 解一元一次不等式组的步骤: (1) 分别求出不等式组中各个不等式的解集; (2) 利用数轴求出这些解集的公共部分, 即这个不等式组的解集 . 两个一元一次不等式组的解集的四种情况(a、b 为实数 , 且 ab ba两大取较大bxaxxa ba两小取小bxaxaxb ba大小交叉中间找bxax无解ba在大小分离没有解(是空集 ) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 11 页第二章分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式, 这种变形叫做把这个多项式分解因式. 2. 因式分解与整式乘法是互逆关系. 因式分解与整式乘法的区别和联系: (1) 整式乘法是把几个整式相乘, 化为一个多项式 ; (2) 因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法1. 如果一个多项式的各项含有公因式, 那么就可以把这个公因式提出来, 从而将多项式化成两个因式乘积的形式 . 这种分解因式的方法叫做提公因式法. 如: )(cbaacab2. 概念内涵 : (1) 因式分解的最后结果应当是“积”; (2) 公因式可能是单项式 , 也可能是多项式 ; (3) 提公因式法的理论依据是乘法对加法的分配律, 即: )(cbammcmbma3. 易错点点评 : (1) 注意项的符号与幂指数是否搞错; (2) 公因式是否提“干净” ; (3) 多项式中某一项恰为公因式, 提出后, 括号中这一项为 +1,不漏掉 . 三. 运用公式法1. 如果把乘法公式反过来 , 就可以用来把某些多项式分解因式. 这种分解因式的方法叫做运用公式法. 2. 主要公式 : (1) 平方差公式 : )(22bababa(2) 完全平方公式 : 222)(2bababa222)(2bababa3. 易错点点评 : 因式分解要分解到底 . 如)(222244yxyxyx就没有分解到底 . 4. 运用公式法 : (1) 平方差公式 : 应是二项式或视作二项式的多项式; 二项式的每项 (不含符号 )都是一个单项式 ( 或多项式 ) 的平方 ; 二项是异号 . (2) 完全平方公式 : 应是三项式 ; 其中两项同号 , 且各为一整式的平方 ; 还有一项可正负 , 且它是前两项幂的底数乘积的2 倍. 5. 因式分解的思路与解题步骤: (1) 先看各项有没有公因式 , 若有, 则先提取公因式 ; (2) 再看能否使用公式法 ; (3) 用分组分解法 , 即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4) 因式分解的最后结果必须是几个整式的乘积, 否则不是因式分解 ; (5) 因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 11 页四. 分组分解法 : 1. 分组分解法 : 利用分组来分解因式的方法叫做分组分解法. 如: )()()(nmbanmbnmabnbmanam2. 概念内涵 : 分组分解法的关键是如何分组, 要尝试通过分组后是否有公因式可提, 并且可继续分解 , 分组后是否可利用公式法继续分解因式. 3. 注意: 分组时要注意符号的变化 . 五. 十字相乘法 : 1. 对于二次三项式cbxax2, 将 a 和 c 分别分解成两个因数的乘积,21aaa , 21ccc, 且满足1221cacab, 往往写成c2a2c1a1的形式 , 将二次三项式进行分解 . 如: )(22112cxacxacbxax2. 二次三项式qpxx2的分解: )(2bxaxqpxxabqbap3. 规律内涵 : (1) 理解: 把qpxx2分解因式时 , 如果常数项 q是正数, 那么把它分解成两个同号因数, 它们的符号与一次项系数 p 的符号相同 . (2) 如果常数项 q 是负数 , 那么把它分解成两个异号因数, 其中绝对值较大的因数与一次项系数p 的符号相同 , 对于分解的两个因数 , 还要看它们的和是不是等于一次项系数p. 4. 易错点点评 : (1) 十字相乘法在对系数分解时易出错; (2) 分解的结果与原式不等 , 这时通常采用多项式乘法还原后检验分解的是否正确. 第三章分式一. 分式1. 两个整数不能整除时 , 出现了分数 ; 类似地 , 当两个整式不能整除时 , 就出现了分式 . 整式 A除以整式 B, 可以表示成BA的形式 . 如果除式 B中含有字母 , 那么称BA为分式 , 对于任意一个分式, 分母都不能为零 . 2. 整式和分式统称为有理式 , 即有: 分式整式有理式3. 进行分数的化简与运算时 , 常要进行约分和通分 , 其主要依据是分数的基本性质: 分式的分子与分母都乘以(或除以 ) 同一个不等于零的整式 , 分式的值不变 . )0(,MMBMABAMBMABA4. 一个分式的分子、分母有公因式时, 可以运用分式的基本性质, 把这个分式的分子、分母同时除以它的们的公因式 , 也就是把分子、分母的公因式约去, 这叫做约分 . 二. 分式的乘除法1. 分式乘以分式 , 用分子的积做积的分子 , 分母的积做积的分母 ; 分式除以以分式 , 把除式的分子、分母颠倒位置后 , 与被除式相乘 . 即: BDACDCBA, CBDACDBADCBAba11精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 11 页鹏翔教图 1BCA2. 分式乘方 , 把分子、分母分别乘方 . 即: )( 为正整数nBABAnnn逆向运用nnnBABA, 当 n 为整数时 , 仍然有nnnBABA成立. 3. 分子与分母没有公因式的分式, 叫做最简分式 . 三. 分式的加减法1. 分式与分数类似 , 也可以通分 . 根据分式的基本性质 , 把几个异分母的分式分别化成与原来的分式相等的同分母的分式 , 叫做分式的通分 . 2. 分式的加减法 : 分式的加减法与分数的加减法一样, 分为同分母的分式相加减与异分母的分式相加减. (1) 同分母的分式相加减 , 分母不变 , 把分子相加减 ; 上述法则用式子表示是 :CBACBCA(2) 异号分母的分式相加减 , 先通分 , 变为同分母的分式 , 然后再加减 ; 上述法则用式子表示是 :BDBCADBDBCBDADDCBA3. 概念内涵 : 通分的关键是确定最简分母, 其方法如下 : 最简公分母的系数 , 取各分母系数的最小公倍数; 最简公分母的字母 , 取各分母所有字母的最高次幂的积, 如果分母是多项式 , 则首先对多项式进行因式分解. 四. 分式方程1. 解分式方程的一般步骤 : 在方程的两边都乘最简公分母, 约去分母 , 化成整式方程 ; 解这个整式方程 ; 把整式方程的根代入最简公分母, 看结果是不是零 , 使最简公母为零的根是原方程的增根, 必须舍去. 2. 列分式方程解应用题的一般步骤: 审清题意 ; 设未知数 ; 根据题意找相等关系, 列出( 分式) 方程; 解方程 , 并验根 ; 写出答案 . 第四章相似图形一. 线段的比1. 如果选用同一个长度单位量得两条线段AB, CD的长度分别是 m 、n, 那么就说这两条线段的比AB:CD=m:n ,或写成nmBA. 2. 四条线段 a、b、c、d 中, 如果 a 与 b 的比等于 c 与 d 的比, 即dcba, 那么这四条线段 a、b、c、d叫做成比例线段 , 简称比例线段 . 3. 注意点 : a:b=k, 说明 a 是 b 的 k 倍;由于线段 a、b 的长度都是正数 , 所以 k 是正数 ;比与所选线段的长度单位无关, 求出时两条线段的长度单位要一致; 除了 a=b之外,a:b b:a, ba与ab互为倒数 ; 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 11 页鹏翔教图 2FEDCBAl3l2l1比例的基本性质 : 若dcba, 则 ad=bc; 若 ad=bc, 则dcba二. 黄金分割1. 如图 1, 点 C把线段 AB分成两条线段 AC和 BC,如果ACBCABAC, 那么称线段 AB被点 C黄金分割 , 点 C叫做线段 AB的黄金分割点 ,AC 与 AB的比叫做黄金比 . 1:618. 0215: ABAC2. 黄金分割点是最优美、最令人赏心悦目的点. 四. 相似多边形1. 一般地 , 形状相同的图形称为相似图形. 2. 对应角相等、对应边成比例的两个多边形叫做相似多边形. 相似多边形对应边的比叫做相似比. 五. 相似三角形1. 在相似多边形中 , 最为简简单的就是相似三角形. 2. 对应角相等、对应边成比例的三角形叫做相似三角形. 相似三角形对应边的比叫做相似比. 3. 全等三角形是相似三角的特例, 这时相似比等于 1. 注意: 证两个相似三角形 , 与证两个全等三角形一样, 应把表示对应顶点的字母写在对应的位置上. 4. 相似三角形对应高的比 , 对应中线的比与对应角平分线的比都等于相似比. 5. 相似三角形周长的比等于相似比. 6. 相似三角形面积的比等于相似比的平方. 六. 探索三角形相似的条件1. 相似三角形的判定方法 : 一般三角形直角三角形基本定理 : 平行于三角形的一边且和其他两边(或两边的延长线 ) 相交的直线 , 所截得的三角形与原三角形相似. 两角对应相等 ; 两边对应成比例 , 且夹角相等 ; 三边对应成比例 . 一个锐角对应相等 ; 两条边对应成比例 :a. 两直角边对应成比例 ; b.斜边和一直角边对应成比例. 2. 平行线分线段成比例定理 : 三条平行线截两条直线 , 所得的对应线段成比例 . 如图 2, l1 / l2 / l3, 则EFBCDEAB. 3. 平行于三角形一边的直线与其他两边(或两边的延长线 )相交, 所构成的三角形与原三角形相似. 八. 相似的多边形的性质相似多边形的周长等于相似比; 面积比等于相似比的平方 . 九. 图形的放大与缩小1. 如果两个图形不仅是相似图形, 而且每组对应点所在的直线都经过同一点, 那么这样的两个图形叫做位似图形 ; 这个点叫做位似中心 ; 这时的相似比又称为位似比. 2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比. 3. 位似变换 : 变换后的图形 , 不仅与原图相似 , 而且对应顶点的连线相交于一点, 并且对应点到这一交点的距离成比例 . 像这种特殊的相似变换叫做位似变换. 这个交点叫做位似中心 . 一个图形经过位似变换后得到另一个图形, 这两个图形就叫做位似形. 利用位似的方法 , 可以把一个图形放大或缩小. 第五章数据的收集与处理一. 每周干家务活的时间1. 所要考察的对象的全体叫做总体; 把组成总体的每一个考察对象叫做个体; 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 11 页从总体中取出的一部分个体叫做这个总体的一个样本. 2. 为一特定目的而对所有考察对象作的全面调查叫做普查; 为一特定目的而对部分考察对象作的调查叫做抽样调查. 二. 数据的收集1. 抽样调查的特点 : 调查的范围小、节省时间和人力物力优点. 但不如普查得到的调查结果精确, 它得到的只是估计值 . 而估计值是否接近实际情况还取决于样本选得是否有代表性. 第六章证明(一) 二. 定义与命题1. 一般地 , 能明确指出概念含义或特征的句子, 称为定义 . 定义必须是严密的 . 一般避免使用含糊不清的术语, 例如“一些”、“大概”、“差不多”等不能在定义中出现 . 2. 可以判断它是正确的或是错误的句子叫做命题. 正确的命题称为真命题, 错误的命题称为假命题 . 3. 数学中有些命题的正确性是人们在长期实践中总结出来的, 并且把它们作为判断其他命题真假的原始依据 , 这样的真命题叫做公理 . 4. 有些命题可以从公理或其他真命题出发, 用逻辑推理的方法判断它们是正确的, 并且可以进一步作为判断其他命题真假的依据, 这样的真命题叫做定理 . 5. 根据题设、定义以及公理、定理等, 经过逻辑推理 , 来判断一个命题是否正确 , 这样的推理过程叫做证明 . 三. 为什么它们平行1. 平行判定公理 : 同位角相等 , 两直线平行 .( 并由此得到平行的判定定理) 2. 平行判定定理 : 同旁内互补 , 两直线平行 . 3. 平行判定定理 : 同错角相等 , 两直线平行 . 四. 如果两条直线平行1. 两条直线平行的性质公理 : 两直线平行 , 同位角相等 ; 2. 两条直线平行的性质定理 : 两直线平行 , 内错角相等 ; 3. 两条直线平行的性质定理 : 两直线平行 , 同旁内角互补 . 五. 三角形和定理的证明1. 三角形内角和定理 : 三角形三个内角的和等于1802. 一个三角形中至多只有一个直角3. 一个三角形中至多只有一个钝角4. 一个三角形中至少有两个锐角六. 关注三角形的外角1. 三角形内角和定理的两个推论: 推论 1: 三角形的一个外角等于和它不相邻的两个内角的和; 推论 2: 三角形的一个外角大于任何一个和它不相邻的内角. (注:表示重点部分;表示了解部分;表示仅供参阅部分;)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 11 页
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号