资源预览内容
第1页 / 共30页
第2页 / 共30页
第3页 / 共30页
第4页 / 共30页
第5页 / 共30页
第6页 / 共30页
第7页 / 共30页
第8页 / 共30页
第9页 / 共30页
第10页 / 共30页
亲,该文档总共30页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
优秀学习资料欢迎下载九年级数学教学案九年级数学备课组总课时第5 课时课题:1.3 平行四边形、 矩形、菱形、正方形的性质与判定(1)课型: 新授时间:2007.8 学习目标 1、会证明平行四边形的性质定理及其相关结论2、能运用平行四边形的性质定理进行计算与证明3、在进行探索、猜想、证明的过程中,进一步发展推理论证的能力 教学重、难点 重点:平行四边形的性质证明表达格式的逻辑性完整性精炼性难点:分析综合思考的方法 教学过程 一、情境创设根据我们曾经探索得到的平行四边形、矩形、菱形、正方形的性质,填写下表:平行四边形矩形菱形正方形对边平行对边相等四边相等对角相等4 个角是直角对角线互相平分对角线相等对角线互相垂直两条对角线平分两组对角从上面的几种特殊四边形的性质中,你能说说它们之间有什么联系与区别吗?如图/,/,/ABA B BCB C CAC A,图中有 _个平行四边形。二、合作交流BCBACA精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 30 页优秀学习资料欢迎下载3241ODCBA活动 1、上表中平行四边形的性质中,你能证明哪些性质?活动 2、你认为平行四边形性质中,可以先证明哪一个?为什么? 活动 3、证明定理“平行四边形对角线互相平分”。已知,如图,在平行四边形ABCD 中,对角线AC、BD 相交于点O,求证: AO=CO ,BO=DO 由此证明过程, 同时也证明了定理“平行四边形对边相等”、 “平行四边形对角相等”,这样我们可得平行四边形的三条性质定理:平行四边形对边相等。平行四边形对角相等。平行四边形对角线互相平分。例 1 :已知:如图,ABCD 中, E、F分别是 AD 、BC的中点。求证:BE=DF 分析:可根据证明ABE CDF得到结论。若将例 1 中的“ E、F 分别是AD 、BC的中点”改为“AE=13AD ,CF=13BC ” ,是否还能得到同样的结论?练习: P15 (2)例 2、 证明“夹在两条平行线之间的平行线段相等”分析:根据命题先画出相应图形,再由命题与所画图形写出已知、求证,最后根据已思考与表达怎样想怎样写要证 AO=CO ,BO=DO 只需证 AOB COD 只需证 AB=CD 只需证 ABC CDA 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 30 页优秀学习资料欢迎下载A D C H B 1200 知条件写出证明过程。例 3 如图,四边形ABCD 是平行四边形,点F 在 BA的延长线上,连结CF交于 AD点 E求证: (1) CDE FAE (2) 当 E是 AD的中点,且BC=2CD 时,求证: F=BCF 证明 : ( 1)四边形ABCD 为平行四边形AB CD , D= EAF DEC= AEF , CDE FAE (2) CDE FAE AEDEAFDCE是 AD的中点AF=DC AD=BC, BC=2CD AD=2AF AE=AF F= AEF AD CB, AEF= BCF F= BCF 说明平行四边形能带来平行线、等角,从而为得到比例线段、相似三角形创造了条件,也就为利用相似解决问题带来了方便. 练习: 1、已知:如图,在平行四边形ABCD 中, AB 8cm ,BC 10cm , C1200,求 BC边上的高AH的长;求平行四边形ABCD 的面积2、如图,平行四边形ABCD 中,AB=3,BC=5 ,AC的垂直平分线交AD于 E,则 CDE的周长是()A 6 B8 C 9 D10 三、分层训练1ABCD 的周长为50cm,且 AB: BC = 3:2,则 AB=_cm ,BC=_cm.;2已知ABCD 中, AB=8 ,BC=10 , B=45,ABCD 的面积为 _. EB CDAFP FCDABE精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 30 页优秀学习资料欢迎下载ABCDO3. 在ABC中 ,AB=AC=5,D是BC上的点 ,DEAB交AC于点E,DFAC交AB于点F, 那么四边形AFDE的周长是()A. 5 B. 10 C. 15 D. 20 4. 延长平形四边形ABCD 的一边 AB到 E,使 BE BD ,连结 DE交 BC于 F,若 DAB 120, CFE 135, AB 1,则 AC 的长为()(A)1 (B)1.2 (C)3 2(D)1.5 5. 如图,四边形ABCD是平行四边形,对角线AC 、BD相交于点 O ,边 AB可以看成由 _平移得来的,ABC可以看成由 _绕点 O旋转 _得来;6. 平行四边形ABCD的两条对角线AC与 BD相交于 O ,已知 AB=8 ,BC=6 , AOB的周长为 18,求 AOD 的周长。7. 已知:如图,ABCD 中, BD是对角线, AE BD于 E,CFBD于 F. 求证: BE=DF. 四、小结引导学生自我归纳总结1、平行四边形对边相等,对角相等,邻角互补,对角线互相平分。2、是中心对称图形,两条对角线的交点是对称中心。3、平行线之间的距离处处相等。五、课堂检测六、教后感九年级数学教学案九年级数学备课组ABCDEF精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 30 页优秀学习资料欢迎下载总课时第 6 课时课题:1.3 平行四边形、 矩形、菱形、正方形的性质与判定(2) 课型:新授时间:2007.8 教学目标:1. 使学生能应用矩形定义、性质等知识,解决有关问题, 进一步培养学生的逻辑推理能力。2. 能将矩形的判定定理和性质定理综合应用, 激发学生的探索精神教学重点:矩形的本质属性教学难点:矩形性质定理的综合应用教学过程:知识回顾:1、 _ 叫矩形, ( 八上 P117)由此可见矩形是特殊的_因而它且有上节课我们证明过的平行四边形性质 _ _ _ 这 三个性质。2、证明:矩形的四个角都是直角如图:已知 _ 求证: _ 图形:画在下面方框内2、 证明: 矩形对角线相等如图:已知 _ 求证: _ 图形:画在下面方框内新授内容观察能力训练如图矩形 ABCD ,对角线相交于E,图中全等三角形有哪些?准备说说看。将目光锁定在RtABC中,你能看到并想到它有什么特殊的性质吗?现在我们借助于矩精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 30 页优秀学习资料欢迎下载ODABC形来证明“直角三角形斜边上的中线等于斜边的一半。” (如何证明?)例 1 、已知:如图,矩形ABCD 的两条对角线相交于点O ,且 AC=2AB. 求证: AOB是等边三角形分析:利用矩形的性质:矩形的对角线相等且互相平分,结合“AC=2AB ”即可证得。本题若将“ AC=2AB ”改为“ BOC=120 ” ,你能获得有关这个矩形的哪些结论?练习: P16页 1 、2 例 2、如图在矩形 ABCD中, BE平分 ABC ,交 CD于点 E,点 F在边 BC上,如果 FE AE ,求证 FE=AE 。如果 FE=AE 你能证明FEAE吗?练习: 1、已知:如图,矩形ABCD的两条对角线相交于点O , AOD 120, AB 4cm ,求矩形对角线的长?FEDABCFEDABCEDABC例 1 图ODABC精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 30 页优秀学习资料欢迎下载OEDCBA2、如图 BD, CE 是 ABC的两条高, M是 BC的中点,求证 ME=MD 四、分层训练1. 已知,在矩形ABCD 中, AE BD ,E是垂足, DAE EAB=2 1,求 CAE的度数。2. 在矩形 ABCD 中,对角线 AC ,BD相交于点O,若对角线AC=10cm ,?边 BC=?8cm ,?则 ABO的周长为 _3. 如图 1,周长为68 的矩形 ABCD被分成 7 个全等的矩形,则矩形ABCD的面积为() (A)98 (B)196 (C)280 (D) 284 (1) (2) (3) 4. 如图 2, 根据实际需要, 要在矩形实验田里修一条公路( ?小路任何地方水平宽度都相等),则剩余实验田的面积为_ _ 5. 如图 3, 在矩形 ABCD中, M是 BC的中点,且MA MD ?若矩形 ABCD? 的周长为48cm,?则矩形 ABCD 的面积为 _cm26. 已知,如图,矩形ABCD的对角线AC ,BD相交于点O,E,F 分别是 OA ,OB的中点(1)求证: ADE BCF ; (2)若 AD=4cm ,AB=8cm ,求 OF的长MDEABC精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 30 页优秀学习资料欢迎下载7. 如图,在矩形ABCD中,已知 AB=8cm ,BC=10cm ,折叠矩形的一边AD,使点 D落在 BC边的中点 F 处,折痕为AE ,求 CE的长8. 阅读下列过程: 如图,小肖过AB , CD的中点画直线EF,把矩形ABCD 分割成甲、乙两部分如图,小徐过A,C两点画直线AC ,把矩形ABCD 分割成丙、丁两部分回答下列问题:(1)填空: S甲_S乙,S丙_S丁(填“”或“ ”或“” ) ;(2)根据小肖、小徐的分割原理,你还能探索出其他的分割方法吗??请在图中任意给出一种;(3)由本题的操作过程,你发现了什么规律?9. 如图 4, 先将一矩形ABCD 置于直角坐标系中,使点A与坐标系的原点重合,边AB 、AD分别落在x 轴、 y 轴上(如图所示) ,?再将此矩形在坐标平面内按逆时针方向绕原点旋转 30(如图所示) ,若 AB=4 ,BC=3 ,则图和图中,点B的坐标为 _,点 C的坐标为 _10. 如图,在矩形纸片ABCD中, AB=33,BC=6,沿 EF折叠后,点C落在 AB边上的点P处,点 D落在点 Q处, AD与 PQ相交于点H, BPE=30 (1)求 BE 、QF的长 (2)求四边形PEFH的面积五、小结从位置、形状、大小等不同的角度,观察和比较平行四边形、矩形的对角线把它们分精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 30 页优秀学习资料欢迎下载成的三角形的异同,发现并应用直角三角形的判定证明矩形的特殊性质;反过来,我们又利用矩形的性质证明“直角三角形中斜边上的中线等于斜边的一半”。六、思考.如图所示, RtABC中, C=90,AC=12 ,BC=5 ,点 M在边 AB上,且 AM=6 (1)动点 D在边 AC上运动,且与点A、C均不重合,设CD=x 设 ABC与 ADM 的面积之比为y,求 y 与 x 之间的函数关系式(写出自变量x 的取值范围);当 x 取何值时,ADM 是等腰三角形?写出你的理由(2)如图,以图中的BC、CA为一组邻边的矩形ACBE中,动点D在矩形边上运动一周,能使ADM是以 AMD为顶角的等腰三角形共有多少个?(直接写出结果,不要求说明理由)九年级数学教学案九年级数学备课组总课时第 7 课时课题:1.3 平行四边形、 矩形、菱形、正方形的性质与判定(3) 课型:新授时间:2007.8 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 30 页优秀学习资料欢迎下载教学目标1、会归纳菱形的特性并进行证明2、能运用菱形的性质定理进行简单的计算与证明3、在进行探索、猜想、证明的过程中,进一步发展推理论证的能力,进一步体会证明的必要性教学重、难点重点:菱形的性质定理证明难点:性质定理的运用生活数学与理论数学的相互转化教学过程:一、 情境创设1将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形? ( 同桌互相帮助。) 2探索。请你作该菱形的对角线,探索菱形有哪些特征,并填空。 (从边、对角线入手。) (1)边:都相等; (2)对角线:互相垂直。 (学生通过自己的操作、观察、猜想,完全可以得出菱形的特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。) 问题:你怎样发现的?又是怎样验证的? (可以指名学生到讲台上讲解一下他的结果。) 3概括。菱形特征1:菱形的四条边都相等。菱形特征2:菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。引导学生剖析矩形与菱形的区别。矩形的对边平行且相等,四个角都是直角,对角线相等且互相平分;菱形的四条边都相等,对边平行,对角相等,对角线互相垂直平分,每条对角线平分它的一组对角。 4请你折折,观察并填空。( 引导学生归纳。) (1)菱形是不是中心对称图形?对称中心是 _。 (2)是不是轴对称图形?对称轴有几条 ?_。二、合作交流问题一观察平行四边形和菱形的对角线把它们所分成的三角形,你有何发现?(引导学生不断地学会从多个角度观察、认识图形,主动地发现和获得新的数学结论,不断地积累数学活动的经验)问题二证明:菱形的4 条边都相等。菱形的对角线互相垂直,并且每一条对角线平分一组对角。分析:第一条定理可先用“两组对边分别相等”证明平行四边形,再利用一组邻边相等得证;第二条定理可利用“三线合一”证得。问题三已知菱形的两条对角线长分别为6 和 8,由此你能获得有关这个菱形的哪些结论?(可得到边长为5;面积为 24)你认为菱形的面积与菱形的两条对角线的长有关吗?如果有关,怎样根据菱形的对角线的计算它的面积?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 30 页优秀学习资料欢迎下载由此可得:菱形的面积等于它的两条对角线长的积的面积。例 1 、如图 3 个全等的菱形构成的活动衣帽架,顶点A、E、 F、C、G、H 是上、下两排挂钩,根据需要可以改变挂钩之间的距离 ( 比如 AC两点可以自由上下活动) ,若菱形的边长为13 厘米,要使两排挂钩之间的距离为24 厘米,并在点B、M处固定,则B 、 M之间的距离是多少?练习 P18 1 、 2 例 2、 已知:如图,四边形ABCD是菱形, G是 AB上任一点, DF交 AC于点 E。求证: AGD= CBE 练习:1、如图,在菱形ABCD 中, E、F 分别是 AB 、CD的中点,如果 EF=2 ,那么 ABCD 的周长是( D )A4 B8 C12 D16 2、如图,已知菱形的两条对角线长为a,b,你能将菱形沿对角线分割后拼接成矩形吗?画图说明(拼出一种图形即可) ;在此过程中,你能发现菱形的面积与a,b的关系吗?拼法( 1)拼法( 2)111112222SSaabab矩形 ( )菱形,或211112222SSbbaab矩形 ()菱形BADCGEHMFODCBAEABCDG精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 30 页优秀学习资料欢迎下载结论:菱形的面积等于两对角线乘积的一半3、 己知:如图, 菱形 ABCD 中, B=600, AB 4, 则以 AC为边长的正方形ACEF的周长为 . 四、分层训练1已知菱形的周长为16cm,则菱形的边长为_cm2已知四边形ABCD是菱形, O 是两条对角线的交点,AC=8cm ,DB=6cm ,?菱形的边长是_cm3已知菱形的边长是5cm,一条对角线长为8cm ,则另一条对角线长为_cm 4菱形 ABCD 的周长为 40cm,两条对角线AC :BD=4 : 3,那么对角线AC=_cm ,BD=_cm 5如图,四边形ABCD 是菱形, ABC=120 , AB=12cm ,则 ABD的度数为 _,? DAB的度数为 _;对角线 BD=_,AC=_;菱形 ABCD 的面积为 _6菱形的两条对角线把菱形分成全等的直角三角形的个数是() (A)1 个(B)2 个(C)3 个(D)4 个7如图,在菱形ABCD中, CE AB ,E为垂足, BC=2 ,BE=1 ,求菱形的周长和面积五、小结菱形的对角线把菱形分成等腰三角形和直角三角形,所以解决菱形问题,常常可以转化为等腰三角形或直角三角形问题。六、作业七、教后感九年级数学教学案九年级数学备课组总课时第 8 课时课题:1.3 平行四边形、 矩形、菱形、正方形的性质与判定(4) 课型:新授时间:2007.8 教学目标精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 30 页优秀学习资料欢迎下载FEO (A)ABCDBDC1、会归纳正方形的特性并进行证明2、能运用正方形的性质定理进行简单的计算与证明3、在进行探索、猜想、证明的过程中,进一步体会证明的必要性以及计算与证明在解决问题中的作用4、在比较、归纳、总结的过程中,进一步体会特殊与一般之间的辩证关系教学重、难点重点:经历观察、实验、猜想、证明等活动,发展合情推理能力和初步的演绎推理能力难点:有条理地、清晰地阐述自己的观点教学过程:一、情境创设这是一个流传在世界各地的故事,三姐妹的父亲是一位慈祥的阿拉伯老人。一天,老人不幸去世, 临终,老人留给三个女儿一件珍贵的传家宝一块五色斑斓的正方形地毯,深爱父亲的女儿们都想得这块地毯,以作纪念。大姐想出了一个好办法:“把它裁成三个小正方形地毯,为了不使地毯剪得过于零碎,最好只剪成4 块,其中两块是正方形,另外两块可以拼成一个正方形。”聪明的你能想出一个巧妙的剪法,符合大姐的设想吗?二、合作交流探索正方形的性质(1)边的性质:;(2)角的性质:;(3)对角线的性质:;(4)对称性:。例 1、已知:如图,正方形 ABCD 的对角线AC、 BD相交于点 O; 正方形 ABCD的顶点 A与点 O重合, AB交 BC于点 E, A D交 CD于点 F,E是 BC的中点。(1)求证: F 是 CD的中点(2)若正方形ABCD绕点 O任意旋转某个角度后,OE=OF吗?分析: (1)方法一 OB=OC,E 是 BC的中点 OE BC,OEC=90 EA F=ECF=90 OFC=90 OC=OD F是 CD的中点FEO (A)ABCDBDC精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 30 页优秀学习资料欢迎下载(第 18 题)A1A2A3A4方法二 EA F=90,ACBD EOC+ COF= DOF+ COF=90 EOC= DOF 又 OC=OD, OCE= ODF=45 OCE ODF(ASA) DF=CE=21BC=21CD,即 F是 CD的中点。(2)证明方法同前方法二。由( 1) 、 (2)可以得到什么结论?(无论正方形A B CD绕点 O 旋转并与正方形 ABCD分别交 BC、CD于点 E、F,总有 OE=OF ,BE=CF ,EC=FD ,两个正方形的重叠部分的面积始终等于正方形ABCD面积的四分之一等等)练习如图,将n 个边长都为1cm的正方形按如图所示摆放,点A1、A2、 An分别是正方形的中心,则n个这样的正方形重叠部分的面积和为()A41cm2 B4ncm2 C41ncm2 Dn)41( cm2例 2、已知,在正方形ABCD中, E 是 BC的中点,点F在 CD上, FAE BAE. 求证: AFBC+FC. 例 3、求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。C B E A D F 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 30 页优秀学习资料欢迎下载例 4、已知正方形ABCD 。(1)如图 1,E是 AD上一点,过BE上一点 O作 BE的垂线,交AB于点 G ,交 CD于点 H,求证: BE GH ;(2)如图 2,过正方形ABCD 内任意一点作两条互相垂直的直线,分别交AD 、 BC于点 E、F,交 AB 、CD于点 G 、H, EF与 GH相等吗?请写出你的结论;(3)当点 O在正方形ABCD 的边上或外部时,过点O作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?其中一种情形如图3 所示,过正方形 ABCD 外一点 O作互相垂直的两条直线m 、n, m与 AD 、BC的延长线分别交于点E、F,n 与 AB 、DC的延长线分别交于点G、H,试就该图对你的结论加以证明。练习:1、 (20XX 年潍坊市)如图7,边长为1 的正方形ABCD绕点 A 逆时针旋转30?到正方形AB CD,图中阴影部分的面积为()A12 B33 C1-33 D1-342、已知:如图,正方形ABCD的周长为 4a,四边形 EFGH 四个顶点E、F、G、H分别在AB 、BC 、CD 、DA上滑动,在滑动过程中,始终有EHBD FG ,且 EH FG ,那么四边形 EFGH的周长是否可求?若能求出,它的周长是多少?若不能求出,请说明理由精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 30 页优秀学习资料欢迎下载三、分层训练 1、如图,正方形ABCD 中, AB=1 ,点 P是对角线AC上的一点,分别以AP 、PC为对角线作正方形,则两个小正方形的周长的和是_。2、如图 , 正方形 ABCD 中, DAF=25 ,AF 交对角线BD于 E,交 CD于 F, 则 BEC= 度. 3、 如图:正方形 ABCD 中, AC=10 , P是 AB上任意一点, PE AC于 E, PF BD于 F, 则 PE+PF= 。可以用一句话概括:正方形边上的任意一点到两对角线的距离之和等于。4、 如图, 正方形 ABCD中, 点 E在 BC的延长线上, AE平分 DAC,则下列结论 : (1) E=22.50. (2) AFC=112.50. (3) ACE=1350 (4)AC=CE(5) ADCE=1 2. 其中正确的有()(A) 5 个(B)4 个(C)3 个(D)2 个5、如图,在正方形ABCD 的边 BC上任取一点M ,过点 C作 CN DM交 AB于 N,设正方形对角线交点为O ,试确定OM与 ON之间的关系,并说明理由6、 (2006济南市)现有若干张边长不相等但都大于4cm的正方形纸片,从中任选一张,如图从距离正方形的四个顶点2cm处,沿 45角画线, 将正方形纸片分成5 部分, 则中间阴影部分的面积是 cm2;若在上述正方形纸片中再任选一张重复上述过程,并计算阴影部分的面积,你能发现什么规律?A D E P D C B A F _F _E _D _C _B _AN O B M C O O 2cm4545452cm精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 30 页优秀学习资料欢迎下载四、小结(1)正方形与矩形,菱形,平行四边形的关系如下图。(请填写它们之间的关系)(2)正方形的性质:正方形对边平行。正方形四边相等。正方形四个角都是直角。正方形既是轴对称图形,又是中心对称图形。正方形对角线相等,互相垂直平分,每条对角线平分一组对( 3)本节课我们把探索和解决问题的思路、方法、结论,从特殊情形逐步推广到一般的情形,从而得到一般的结论,这也是我们获得数学结论的一种重要的思想方法。五、课堂检测六、教后感九年级数学教学案九年级数学备课组总课时第 9 课时精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 30 页优秀学习资料欢迎下载课题:1.3 平行四边形、 矩形、菱形、正方形的性质与判定(5) 课型:新授时间:2007.8 教学目标1、会证明平行四边形的判定定理,结合具体命题了解反证法2、能运用平行四边形的判定定理及反证法进行简单的计算与证明3、能运用平行四边形的性质与判定定理进行比较简单的综合推理与证明4、初步体会证明过程中的反证法的思想及其说理的过程教学重、难点重点:平行四边形判定定理的证明,反证法难点:用反证法证明教学过程:一、情境创设回忆我们曾探索得到的一个四边形是平行四边形的条件,填写下表:条件结论四边形 ABCD , 对角线 AC 、BD相交于点 O 四边形ABCD是平行四边形二、合作交流问题一你能证明我们曾探索得到的平行四边形的判定方法是正确的吗?证明:一组对边平行且相等的四边形是平行四边形。分析:先根据命题画出图形,再写出已知、求证,最后用研究平行四边形常见的辅助线“连结对角线”证三角形全等,得到两组内错角相等,由平行线证出平行四边形。问题二证明:对角线互相平分的四边形是平行四边形。问题三你认为“一组对边平行,另一组对边相等的四边形是平行四边形”这个结论正确吗?为什么?问题四你认为“在四边形ABCD中,如果OA=OC , OB OD ,那么四边形ABCD不是平行四边形”这个结论正确吗?为什么?分析:假设四边形ABCD 是平行四边形,那么OA=OC ,OB=OD ,这与条件OB OD矛盾,所以四边形ABCD 不是平行四边形。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 30 页优秀学习资料欢迎下载FGOE DCAB假设条件成立,结论不成立,然后由这个“假设”出发推导出与条件矛盾的结果,从而证明结论一定成立,这种证明方法叫做反证法。例 1 已知:如图,在ABCD中,对角线AC 、BD 相交于点O ,AE BD ,CFBD ,垂足分别为E、F。求证:四边形AECF是平行四边形。练习: P20页 拓展与延伸及练习1、2 例 2、如图,已知E为平行四边形ABCD 中 DC边的延长线上的一点,且CE=DC ,连结 AE ,分别交 BC 、 BD于点 F、G,连结 AC交 BD于 O,连结 OF.求证: AB=2OF. 说明能用平行四边形的知识解决的问题,不必用三角形的知识解决,这样更简便. 练习 1如图,平行四边形ABCD中,EF为边 AD 、BC上的点,且AE=CF ,连结 AF、EC 、BE 、DF交于 M 、N,试说明: MFNE 是平行四边形2. 如图:已知在ABC中, AB=AC ,D为 BC上任意一点, DE AC交 AB于 E ,DFAB交AC于 F,求证: DE+DF=AC 3. 平行四边形ABCD中,E、G、F、H分别是四条边上的点,且AE=CF,BG=DH求证:EF和GH互相平分4. 已知:如图,在平行四边形ABCD 中,连结BD 求作: A的平分线AE交 BC于 E,交 BD 于 F; (要求用尺规作图,不写作法和证明)求证: AB BE ; ABADBFDF三、分层训练:1. 已知AD BC,要使四边形ABCD为平行四边形,需要增加条件(只需填一个你认为正确的条件即可). 2. 已知:ABCD 的周长是30cm ,对角线 AC ,BD相交于点O ,AOB的周长比 BOC 的周长为 5cm ,则这个平行四边形的各边长为. 3. 如图,在ABCD 中, EFBC ,GH AB , EF、GH的交点 P在OABCDEFMEDNF1 题CBAA B C D 第 2 题第 4 题精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 19 页,共 30 页优秀学习资料欢迎下载BD上,则图中有对四边形面积相等;它们是4.ABCD 中,过 O点的直线EF分别交 AD 、CB于 E、F,AB 2.4 , BC=4,OE=1.1, 则四边形CDEF的周长为 _ . 5.ABCD中, AC、 BD 的长满足方程0862xx,则CB 的长的取值范围为 . 6、如图,在ABCD 中, DAB=60 ,点E、F 分别在 CD 、 AB的延长线上,且AE=AD ,CF=CB (1) 求证: 四边形 AFCE是平行四边形 (2)若去掉已知条件的“ DAB=60 ,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由四、小结1. 从边与边的关系: 两组对边分别平行一组对边平行且相等一组对边平行且相等的四边形是平行四边形。两组对边分别相等2. 从角与角的关系: 两组对角分别相等的四边形是平行四边形。3. 从对角线的相互关系: 对角线互相平分的四边形是平行四边形。五、课堂检测六、教后感九年级数学教学案九年级数学备课组总课时第 10 课时课题:1.3 平行四边形、 矩形、菱形、正方形的性质与判定(6) 课型:新授时间:2007.8 教学目标精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 20 页,共 30 页优秀学习资料欢迎下载1、会证明矩形的判定定理2、能运用矩形的判定定理进行计算与证明3、能运用矩形的性质定理与判定定理进行比较简单的综合推理与证明教学重、难点重点:矩形判定定理的证明难点:矩形判定定理的应用教学过程:一、情境创设具备什么条件的平行四边形是矩形?具备什么条件的四边形是矩形?同学之间进行交流。二、探索活动问题一如图,在ABCD 中, AC=BD ,由此你可得到什么?问题二如图,要证ABCD 是矩形,需证什么?为什么?根据矩形的定义,只要证ABCD的一个角是直角;或证ABO+ CBO=90 ;或证ABC= DCB. 问题三说说证明“对角线相等的平行四边形是矩形”的思路。由问题二可得出多种证明思路。三、例题教学例 1、P22 例 5 练习: P23 1、2 例 2、已知:如图,ABCD 的四个内角平分线相交于点E、F、G、H。求证: EG=FH FHABCDEG精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 21 页,共 30 页优秀学习资料欢迎下载例 3 已知:平行四边形ABCD 的对角线AC 、BD相交于 O , AOB是等边三角形,AB 4cm,求这个平行四边形的面积(如图438) 。分析解题思路:(1)先判定平行四边形ABCD为矩形。(2)求出 Rt ABC的直角边BC的长。(3)计算 SAB BC 小结:(1)具有平行四边形的所有性质。(2)特有性质:四个角都是直角,对角线线段。(3)矩形的判定方法1、 2 都是有两个条件:是平行四边形,有一个角是直角或对角线相等。判定方法3的两个条件是:是四边形,有三个直角。练习:1. 如图, BO是 RtABC斜边上的中线,延长BO至点 D,使 BO=DO ,连结 AD ,CD ,?则四边形 ABCD是矩形吗?请说明理由2已知:如图,BC是等腰 BED底边 ED上的高,四边形ABEC是平行四边形求证:四边形 ABCD 是矩形B A D C O 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 22 页,共 30 页优秀学习资料欢迎下载例 4、如图,在平行四边形ABCD中,E、F 分别为边AB 、CD的中点, BD是对角线, AG DB交 CB的延长线于G(1)求证: ADE CBF ;(2)若四边形 BEDF是菱形, 则四边形 AGBD 是什么特殊四边形?并证明你的结论四、分层训练1下列说法错误的是()(A)有一个内角是直角的平行四边形是矩形(B)矩形的四个角都是直角,并且对角线相等(C)对角线相等的平行四边形是矩形(D)有两个角是直角的四边形是矩形2平行四边形内角平分线能够围成的四边形是()(A)梯形(B )矩形(C)正方形(D)不是平行四边形3如图, E , F,G,H 分别是四边形ABCD四条边的中点,要使四边形EFGH 为矩形,四边形 ABCD应具备的条件是() (A)一组对边平行而另一组对边不平行; (B)对角线相等(C)对角线互相垂直; (D)对角线互相平分4工人师傅在做门框或矩形零件时,常常测量它们的两条对角线是否相等来检查直角的精度,为什么? 工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图),使 AB=CD ,EF=GH ;(2)摆放成如图的四边形,则这时窗框的形状是_形,根据的数学原理是:_ ;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 23 页,共 30 页优秀学习资料欢迎下载(3)将直角尺靠紧窗框的一个角(如图),调整窗框的边框,?当直角尺的两条直角边与窗框无缝隙时(如图),说明窗框合格,这时窗框是_形,根据的数学原理是: _五、小结进行推理论证常常需要从两个方向思考:“证明结论, 需要什么条件?” “从已知条件可以推出哪些证明结论所需的事项?”这样有利于探索并获得证明的思路。六、作业七、教后感九年级数学教学案九年级数学备课组精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 24 页,共 30 页优秀学习资料欢迎下载总课时第 11 课时课题:1.3 平行四边形、 矩形、菱形、正方形的性质与判定(7) 课型:新授时间:2007.8教学目标1、会证明菱形的判定定理2、能运用菱形的判定定理进行计算与证明3、能运用菱形的性质定理与判定定理进行比较简单的综合推理与证明教学重、难点重点:菱形判定定理的证明难点:菱形判定定理的应用教学过程:一、情境创设具备什么条件的平行四边形是菱形?具备什么条件的四边形是菱形?同学之间进行交流。二、探索活动探索“对角线互相垂直的平行四边形是菱形”的证明思路。问题一如图,在ABCD 中,对角线AC 、 BD相交于点O,且 AC BD ,由此你可证得什么?问题二如图,要证平行四边形ABCD 是菱形,需证什么?为什么?问题三说说证明“对角线互相垂直的平行四边形是菱形”的思路。思考与探索你能用直尺和圆规作一个菱形?并说明作图的理由。作法一:可利用“四边相等的四边形是菱形”来作,先作一个角,再在角的两边上截取相等的边作为菱形的边长,再分别以两个截点为圆心,菱形的边长为半径画弧,两弧相交于一点,这点即为菱形的第四个顶点;作法二:可利用“对角线互相垂直平分的四边形是菱形”来作,可先作出两条互相垂直平分的线段,再将两条线段的四个端点顺次连结起来,即作出了一个菱形。例 1、 已知:如图,在ABC中, ABC=90 , AD是角平分线,点E、F 分别在 AC 、AD上,且 AE=AB ,EF BC 。求证:四边形CDEF是菱形。练习:1、已知:如图,在ABCD 中,对角线BD平分 ABC 。求证:四边形ABCD是菱形。ODCBADCBAEFABCD精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 25 页,共 30 页优秀学习资料欢迎下载2、已知:如图,在ABC中, AD是角平分线,E是 AB上一点,且AE=AC , EG BC ,EG交 AD于点 G 。求证:四边形EDCG 是菱形。例 2、如图,在Rt ABC中, ACB=90 , BAC=60 , DE? 垂直平分BC ,垂足为D,交AB于点 E,又点 F 在 DE的延长线上,且AF=CE 求证:四边形ACEF为菱形练习: 1、如图,在 ABC中, ACB=90 , AC=2,BC=3 D是 BC边上一点, ?直线 DE BC于 D,交 AB于 E,CFAB交直线 DF于 F设 CD=x (1)当 x 取何值时,四边形EACF 是菱形?请说明理由;(2)当 x 取何值时,四边形EACD 的面积等于2?2如图,点E、F 是菱形 ABCD的边 BC 、CD上的点,请你添加一个条件( ?不得另外添加辅助线和字母),使 AE=AF ,你添加的条件是_四、分层训练1、判断(1)对角线互相垂直的四边形是菱形。()(2)对角线互相平分的四边形是菱形。()ABCDEG精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 26 页,共 30 页优秀学习资料欢迎下载(3)两组对边分别平行,且对角线的四边形是菱形。(4)两组对边分别相等,且对角线互相垂直的四边形是菱形。()2、(1) 如图, O是矩形 ABCD的对角线的交点,DE AC ,CE BD ,DE和 CE相交于 E ,求证:四边形OCED 是菱形。3、 、已知:如图,AD是 ABC的角平分线, DE AC交 AB于点 E,DF AB交 AC于点 F,请判断四边形AEDF的形状,并说明理由。4、已知:如图,ABCD 的对角线AC的垂直平分线与边AD、BC 分别相交于点E、F。求证:四边形AFCE是菱形。5、将一张长方形纸片既快又准确地剪出一个菱形,并说出这样剪的依据。五目标检测六、小结1、 用直尺和圆规作一个菱形,并说明作图依据。2、 菱形的判定方法。七、教后感九年级数学教学案九年级数学备课组总课时第 12 课时课题:1.3 平行四边形、 矩形、菱形、正方形的性质与判定(8) 课型:新授时间:2007.8ABCDEFOABCDEF精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 27 页,共 30 页优秀学习资料欢迎下载教学目标1、根据平行四边形、矩形、菱形与正方形之间的关系,归纳出正方形的判定定理2、能运用正方形的判定定理进行简单的计算与证明3、能运用正方形的性质定理与判定定理进行比较简单的综合推理与证明4、在探究与证明正方形判定定理的过程中,进一步体会一般与特殊的辩证关系,提高分析问题与解决问题的能力教学重、难点重点:正方形判定的应用难点:通过引导合情推理和演绎推理,提高逻辑思维水平教学过程:一、情境创设正方形是特殊的矩形和特殊的菱形,那么什么样的矩形是正方形?什么样的菱形是正方形?二、合作交流为了活跃学生思维,可以提出以下问题:对角线相等的菱形是正方形吗?为什么?对角线互相垂直的矩形是正方形吗?为什么?对角线垂直且相等的四边形是正方形吗?为什么?四条边都相等的四边形是正方形吗?为什么?说“四个角相等的四边形是正方形”对吗?判定方法( 1)矩形、菱形法:先判定四边形是矩形,再判定这个矩形是菱形(一组邻边相等的矩形);或者先判定四边形是菱形,再判定这个菱形也是矩形(有一个角是直角的菱形)。( 2)定义法:有一组邻边相等且有一个角是直角的平行四边形是正方形,这是直接利用定义来判定的。如何用直尺和圆规作正方形?如何把长方形纸片通过折纸,剪出一个正方形纸片?例 1 已知:如图, E、F、G 、H分别是正方形各边的中点,AF、BG 、CH 、 DE分别两两相交于点A、 B、 C、 D。求证:四边形是正方形。(是否还有其他证明方法?与同学交流)DCBAABCDEFGH精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 28 页,共 30 页优秀学习资料欢迎下载ABCDABCD若点 E、F、 G 、H分别在正方形ABCD的各边上,且AE=BF=CG=DH,则四边形A BCD还是正方形吗?证明你的结论。练习: 1、P25 练习 1、2 例 2:已知:如图,点A 、B 、C 、D 分别是正方形ABCD 四条边上的点,并且AABBCCDD。求证:四边形ABCD是正方形例 3、如图,在RtABC与 Rt ABD中, ABC= BAD=90 , AD=BC,AC,BD相交于点G,过点 A作 AE DB交 CB的延长线于点E,过点 B作 BFCA 交 DA的延长线于点F,AE,BF 相交于点 H(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明四边形AHBG 是菱形;(3)若使四边形AHBG 是正方形, 还需在 RtABC 的边长之间再添加一个什么条件?请你写出这个条件 (不必证明)练习:1用两个全等的直角三角形拼下列图形:平行四边形;矩形;菱形;正方形;等腰三角形;等边三角形;一定可以拼成的是_(只填序号) 2、(20XX年黄冈市) 如图 2, 将边长为8cm的正方形ABCD 的四边沿直线L 向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是_cm三、分层训练1、如图 6 所示,在四边形ABCD中, AB=BC=CD=DA,对角线AC与 BD相交于点O 若不增加任何字母与辅助线,要使得四边形ABCD 是正方形,则还需增加的一个条件是A B C D O 24 题精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 29 页,共 30 页优秀学习资料欢迎下载2、如图, ABC中, ACB=90 , CD平分 ACB ,DE AC ,DF BC ,E 、 F是垂足。求证:四边形DECF是正方形。3、已知:如图,在Rt ABC中, ACB=90 , CD是角平分线,DE AC , DF BC ,垂足分别为E 、F。求证:四边形ECFD是正方形。5、如图,将一张长方形纸片对折两次,然后剪下一个角,打开如果要剪出一个正方形,那么剪口线与折痕成()22.5304560五、小结1、特殊的图形具有一般图形的性质和它的特殊性质。2、一个图形的形状越特殊,它的判定需要的条件就越多。3、判定一个四边形是正方形的思考方法有哪些?六、教后感aaaa ABCDEFABDCFE(第 5 题图)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 30 页,共 30 页
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号