资源预览内容
第1页 / 共4页
第2页 / 共4页
第3页 / 共4页
第4页 / 共4页
亲,该文档总共4页全部预览完了,如果喜欢就下载吧!
资源描述
学习必备欢迎下载复习内容:确定圆的条件教学目标:1、理解不在同一直线上的三个点确定一个圆。2、掌握过不在同一直线上的三个点作圆的方法。3、了解三角形的外接圆,三角形的外心等概念。4、经历作圆的过程,进一步体会解决问题的策略。教学重点: 理解不在同一直线上三个点确定一个圆及作圆的方法教学难点: 过不在同一条直线上的三个点作圆的方法。课堂教学:知识点 1:过三点的圆。由圆的定义可知,圆有两个要素:一个是圆心,另一个是半径,圆心确定圆的位置,半径确定圆的大小,作图的关键是确定圆心的位置和半径的大小。探索 1: 作圆,使它经过已知点A 由于所求的圆的圆心和半径都没有限制,因此,只要以点A 以外的任意一点为圆心,以这一点(圆心)与点A 的距离为半径,就可以作出要求作的圆,这样的圆有无数个。探索 2: 作圆,使它经过A,B 两点。要作经过 A、B 两个点的圆,就必须以与点A、B 距离相等的点为圆心。所以只要以线段 AB 为垂直平分线上任意一点为圆心,以这点与A 或 B 的距离为半径长,就可以作出要求作的圆,这样的圆也有无数个。探索 3: 作圆,使它经过不在同一直线上的三个已知点。作圆的关键是圆心和半径,要求圆心到三点的距离相等。因此符合这样条件的点是唯一的,而半径也是唯一的。所以这样的圆是唯一的。结论: 不在同一条直线上的三个点确定一个圆,同一直线上三点不能作圆。知识点 2:三角形外接圆、三角形的外心,圆的内接三角形的概念。三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆。外接圆的圆心是三角形的三边的垂直平分线的交点,叫做三角形的外心,这个三角形叫做这圆的内接三角形。如图, O 为 ABC 的外接圆, O 为 ABC 的外心, ABC 是 O 的内接三角形。说明:1、锐角三角形的外心在三角形的内部2、 “接”说明三角形的顶点与圆的位置关系,“内” “外”是相对的位置关系。以三角形为准,那么圆在其外,并且三个顶点都在圆上,就说圆是三角形的外接圆。【典型例题 】例 1. 下列命题中,真命题的个数是()经过三点一定可以作圆;任意一个圆一定有一个内接三角形,并且只有一个内接三精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 4 页学习必备欢迎下载角形。 任意一个三角形一定有一个外接圆,并且只有一个外接圆,三角形的外心到三角形的三个顶点距离相等。A. 4 个B. 3 个C. 2 个D. 1 个例 2. 如图,直角坐标系中一条圆孤经过网格点A、B、C,其中 B 点坐标为( 4,4) ,则该圆孤所在的圆的圆心的坐标。例 3. 图中 ABC 外接圆的圆心坐标是例 4. 如图,方格纸上一圆经过(2,5) , (2, 3)两点,则该圆圆心的坐标为例 5. 一只猫观察到一老鼠洞的全部三个出口,它们不在一条直线上,这只猫应蹲在地方,才能最省力地顾及到三个洞口。例 6 已知,锐角 ABC 用直尺和圆规,作ABC 的外接圆,写出作法,并保留作图痕迹。作法:例 7. 在 RtABC 中, C90,直角边长a, b是方程0242xx的两个根。求 RtABC 的外接圆的半径。分析: 由直角三角形的外心为斜边中点可知,RtABC 的斜边 AB 即为其外接圆直径,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 4 页学习必备欢迎下载因此只要求出AB 即可,而AB 可由方程求得。例 8. 在 ABC 中, ABAC 10,BC12 求其外接圆的半径。例 9. 已知直线a:yx3 和点 A(0, 3) ,B( 3,0)设 P 为 a上一点,试判断P、A、B 是否在同一个圆上。分析: P、A、B 三点能否确定圆的关键是判断P、A、B 是否在同一直线上,已知点P在直线 a 上,应判断A、B 两点是否在直线a 上。例 10. 大家知道: 四个点不能确定一个圆,但是有些特殊的四边形的四个顶点在同一个圆上请说出这些特殊的四边形,并研究这些四边形的四个内角之间有什么特殊的大小关系。解: 特殊的四边形为矩形,正方形,等腰梯形,它们四个内角中相对的两个内角和为180说明: 本题是对不共线三点确定一个圆的知识的拓展,我们要善于联想,大胆猜想,灵活运用所学知识探究出新的知识。例 11. 如图,已知圆的内接三角形ABC 中, AB AC, D 是 BC 边上的一点,E 是直线AD 的延长线与ABC 外接圆的交点。(1)求证: AB2AD AE (2)当 D 为 BC 延长线上一点时,第(1)问的结论成立吗?如果成立,请证明,如果不成立,请说明理由。【模拟试题 】 (答题时间: 30 分钟)1. 判断题(正确的在题后括号内打“”,错误的打“” )(1)经过三个点一定可以作圆()(2)三角形的外心到三角形各顶点的距离都相等()(3)任意一个三角形一定有一个外接圆,并且只有一个外接圆()(4)任意一个圆一定有一个内接三角形,并且只有一个内接三角形()2. 三角形的外心是()(A) 三条边中线的交点(B) 三条边高的交点(C) 三条边垂直平分线的交点(D)三条角平分线的交点3. 在同一个圆中画两条直径,依次连接四个端点得到的四边形是()(A) 菱形(B) 等腰梯形(C) 正方形(D)矩形4. 如图, P 为正三角形ABC 外接圆上一点,则APB 等于()(A)150(B)135(C) 115(D) 1205. 若 ABC 的外接圆的圆心在ABC 的外部,则 ABC 是()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 4 页学习必备欢迎下载A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定6. 下列命题中,正确的是()A. 三点可确定一个圆B. 三角形的外心是三角形三边中线的交点C. 一个三角形有且只有一个外接圆D. 三角形的外心必在三角形的内部或外部7. 等腰直角三角形的外接圆的半径为()A. 腰长B. 腰长的22倍C. 底边长的22倍D. 腰上的高8. RtABC 中, C90, BC5 ,AC 12 则其外接圆半径为9. 若直角三角形的两直角边长分别为6,8,则这个三角形的外接圆直径是10. 等腰三角形ABC 内接于半径为5cm 的 O 中,若底边BC8cm,则 ABC 的面积是11. 在 RtABC 中,如果两条直角边的长分别为3、4,那么 RtABC 的外接圆的面积为12. 等边三角形的边长为4,则此三角形外接圆的半径为13. 如图,是一块残破的圆轮片,A、B、C 是圆弧上的三点(1)作出弧 ACB 所在的 O(不写作法,保留作图痕迹)(2)如果 AC BC60cm, ACB 120,求该残破圆轮片的半径。【试题答案】1. 2.C 3. D 4. D 5. C 6. C 7. B 8. 6.5 9. 10 10. 8cm2或 32 cm211. 42512. 33413. ( 1)作图略(2)60cm 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 4 页
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号