资源预览内容
第1页 / 共34页
第2页 / 共34页
第3页 / 共34页
第4页 / 共34页
第5页 / 共34页
第6页 / 共34页
第7页 / 共34页
第8页 / 共34页
第9页 / 共34页
第10页 / 共34页
亲,该文档总共34页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
学习好资料欢迎下载中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:1、 有理数:任何一个有理数总可以写成qp的形式,其中 p、 q 是互质的整数,这是有理数的重要特征。2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如 1.101001000100001 ;特定意义的数,如 、45sin 等。二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。(1)实数 a的相反数是 a; (2)a 和 b互为相反数a+b=0 2、倒数:(1)实数 a(a0 )的倒数是a1; (2)a 和 b 互为倒数1ab; (3)注意 0没有倒数3、绝对值:(1)一个数 a 的绝对值有以下三种情况:0,0,00,aaaaaa(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性 (正、负)确认,再去掉绝对值符号。无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 34 页学习好资料欢迎下载4、n 次方根(1)平方根,算术平方根:设 a0 ,称a叫 a 的平方根,a叫 a 的算术平方根。(2)正数的平方根有两个,它们互为相反数; 0 的平方根是 0;负数没有平方根。(3)立方根:3a叫实数 a的立方根。(4)一个正数有一个正的立方根; 0的立方根是 0;一个负数有一个负的立方根。三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。2、 数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。2、正数大于 0;负数小于 0;正数大于一切负数;两个负数绝对值大的反而小。五、实数的运算1、加法: (1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。2、减法:减去一个数等于加上这个数的相反数。3、乘法: (1)两数相乘,同号取正,异号取负,并把绝对值相乘。(2)n 个实数相乘,有一个因数为 0,积就为 0;若 n个非 0 的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。4、除法: (1)两数相除,同号得正,异号得负,并把绝对值相除。(2)除以一个数等于乘以这个数的倒数。(3)0 除以任何数都等于 0,0 不能做被除数。5、乘方与开方:乘方与开方互为逆运算。6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。六、有效数字和科学记数法精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 34 页学习好资料欢迎下载1、科学记数法:设 N0,则 N= an10(其中 1 a10,n 为整数) 。2、有效数字:一个近似数,从左边第一个不是 0 的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。精确度的形式有两种: (1)精确到那一位; (2)保留几个有效数字。第二章:代数式基础知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。单独一个数或者一个字母也是代数式。2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。3、代数式的分类:无理式分式多项式单项式整式有理式代数式二、整式的有关概念及运算1、概念(1)单项式:像 x、7、yx22,这种数与字母的积叫做单项式。单独一个数或字母也是单项式。单项式的次数: 一个单项式中, 所有字母的指数叫做这个单项式的次数。单项式的系数:单项式中的数字因数叫单项式的系数。(2)多项式:几个单项式的和叫做多项式。多项式的项: 多项式中每一个单项式都叫多项式的项。 一个多项式含有几项,就叫几项式。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 34 页学习好资料欢迎下载多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。不含字母的项叫常数项。升 (降) 幂排列: 把一个多项式按某一个字母的指数从小 (大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。2、运算(1)整式的加减:合并同类项:把同类项的系数相加, 所得结果作为系数,字母及字母的指数不变。去括号法则:括号前面是 “+”号,把括号和它前面的 “+”号去掉, 括号里各项都不变;括号前面是 “”号, 把括号和它前面的 “”号去掉,括号里的各项都变号。添括号法则:括号前面是 “+”号,括到括号里的各项都不变;括号前面是 “”号,括到括号里的各项都变号。整式的加减实际上就是合并同类项, 在运算时,如果遇到括号,先去括号,再合并同类项。(2)整式的乘除:幂的运算法则:其中 m、n 都是正整数同底数幂相乘:nmnmaaa;同底数幂相除:nmnmaaa;幂的乘方:mnnmaa )(积的乘方:nnnbaab)(。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 34 页学习好资料欢迎下载单项式乘以单项式: 用它们系数的积作为积的系数, 对于相同的字母,用它们的指数的和作为这个字母的指数; 对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。单项式乘以多项式: 就是用单项式去乘多项式的每一项, 再把所得的积相加。多项式乘以多项式: 先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。单项除单项式:把系数,同底数幂分别相除, 作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。乘法公式:平方差公式:22)(bababa;完全平方公式:2222)(bababa,2222)(bababa三、因式分解1、因式分解概念: 把一个多项式化成几个整式的积的形式,叫因式分解。2、常用的因式分解方法:(1)提取公因式法:)(cbammcmbma(2)运用公式法:平 方 差 公 式 :)(22bababa; 完 全 平 方 公 式 :222)(2bababa精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 34 页学习好资料欢迎下载(3)十字相乘法:)()(2bxaxabxbax(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。(5)运用求根公式法:若)0(02acbxax的两个根是1x、2x,则有:)(212xxxxacbxax3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。(4)最后考虑用分组分解法。四、分式1、分式定义:形如BA的式子叫分式, 其中 A、B 是整式,且B 中含有字母。(1)分式无意义: B=0 时,分式无意义;B0 时,分式有意义。(2)分式的值为 0:A=0,B0 时,分式的值等于 0。(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。方法是把分子、分母因式分解,再约去公因式。(4)最简分式:一个分式的分子与分母没有公因式时,叫精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 34 页学习好资料欢迎下载做最简分式。 分式运算的最终结果若是分式, 一定要化为最简分式。(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。(6)最简公分母: 各分式的分母所有因式的最高次幂的积。(7)有理式:整式和分式统称有理式。2、分式的基本性质:(1))0(的整式是MMBMABA; (2))0(的整式是MMBMABA(3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减, 先把它们通分成同分母的分式再相加减。(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。(3)除:除以一个分式等于乘上它的倒数式。(4)乘方:分式的乘方就是把分子、分母分别乘方。五、二次根式1、二次根式的概念:式子)0(aa叫做二次根式。(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 34 页学习好资料欢迎下载(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。(3)分母有理化:把分母中的根号化去叫做分母有理化。(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式, 我们就说这两个代数式互为有理化因式(常用的有理化因式有:a与a;dcba与dcba)2、二次根式的性质:(1))0()(2aaa;(2))0()0(2aaaaaa;(3)baab(a0 ,b0 ) ; (4))0, 0(bababa3、运算:(1)二次根式的加减: 将各二次根式化为最简二次根式后,合并同类二次根式。(2)二次根式的乘法:abba(a0 ,b0 ) 。(3)二次根式的除法:)0, 0(bababa二次根式运算的最终结果如果是根式,要化成最简二次根式。第三章:方程和方程组基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解, 含有一个未知数的方程的解也叫做方程的根。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 34 页学习好资料欢迎下载3、解方程:求方程的解或方判断方程无解的过程叫做解方程。4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。二、一元方程1、一元一次方程(1)一元一次方程的标准形式: ax+b=0(其中 x 是未知数,a、b 是已知数,a0 )(2)一元一次方程的最简形式: ax=b(其中 x 是未知数,a、b是已知数, a0 )(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。(4)一元一次方程有唯一的一个解。2、一元二次方程(1)一元二次方程的一般形式:02cbxax(其中 x是未知数,a、b、c 是已知数,a0 )(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。(4)一元二次方程的根的判别式:acb42当 0时方程有两个不相等的实数根;当 =0时方程有两个相等的实数根;当 0图像与 y 轴交点在 x轴上方;c=0图像过原点;c0图像与 y 轴交点在 x 轴下方;(3)a,b决定抛物线对称轴的位置: a,b 同号,对称轴在 y 轴左侧;b0,对称轴是 y轴; a,b异号。对称轴在 y 轴右侧;3、反比例函数:4、正比例函数与反比例函数的对照表:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 34 页学习好资料欢迎下载第七章:统计初步知识点:一、总体和样本:在统计时,我们把所要考察的对象的全体叫做总体,其中每一考察对象叫做个体。从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量。二、反映数据集中趋势的特征数1、平均数(1)nxxxx,321的平均数,)(121nxxxnx(2)加权平均数:如果 n 个数据中,1x出现1f次,2x出现2f次,kx出现kf次(这里nfffk21) ,则)(12211kkfxfxfxnx(3)平均数的简化计算:当一组数据nxxxx,321中各数据的数值较大,并且都与常数a 接近时,设axaxaxaxn,321的平均数为 x则:axx。2、 中位数: 将一组数据接从小到大的顺序排列,处在最中间位置上的数据叫做这组数据的中位数,如果数据的个数为偶数中位数就是处在中间位置上两个数据的平均数。3、众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。 一组数据的众数可能不止一个。三、反映数据波动大小的特征数:1、方差:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 34 页学习好资料欢迎下载(l)nxxxx,321的方差,nxxxxxxSn222212)()()(2、标准差:方差(2S)的算术平方根叫做标准差( S ) 。注:通常由方差求标准差。四、频率分布1、有关概念(1)分组:将一组数据按照统一的标准分成若干组称为分组, 当数据在 100个以内时,通常分成512 组。(2)频数:每个小组内的数据的个数叫做该组的频数。各个小组的频数之和等于数据总数n。(3)频率:每个小组的频数与数据总数 n 的比值叫做这一小组的频率,各小组频率之和为 l。(4)频率分布表:将一组数据的分组及各组相应的频数、频率所列成的表格叫做频率分布表。(5)频率分布直方图:将频率分布表中的结果,绘制成的,以数据的各分点为横坐标,以频率除以组距为纵坐标的直方图,叫做频率分布直方图。图中每个小长方形的高等于该组的频率除以组距。每个小长方形的面积等于该组的频率。所有小长方形的面积之和等于各组频率之和等于 1。样本的频率分布反映样本中各数据的个数分别占样本容量 n的比例的大小,总体分布反映总体中各组数据的个数分别在总体中所占比例的大小,一般是用样本的频率分布去估计总体的频率分布。2、研究频率分布的方法;得到一数据的频率分布和方法,通常是先整理数据,后画出频率分布直方图,其步骤是:(1)计算最大值与最小值的差; (2)决定组距与组数; (3)决定分点; (4)列领率分布表; (5)绘频率分布直方图。几何部分第一章:线段、角、相交线、平行线知识点:一、直线:直线是几何中不加定义的基本概念,直线的两大特征是 “ 直” 和“ 向两方无限延伸” 。二、直线的性质:经过两点有一条直线,并且只有一条直线,直线的这条性质是以公理的形式给出的,可简述为:过两点有且只有一条直线,两直线相交,只有一个交点。三、射线:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 34 页学习好资料欢迎下载1、射线的定义:直线上一点和它们的一旁的部分叫做射线。2射线的特征:“ 向一方无限延伸,它有一个端点。 ”四、线段:1、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。2、线段的性质(公理) :所有连接两点的线中,线段最短。五、线段的中点:1、定义如图 1一 1 中,点 B把线段 AC 分成两条相等的线段,点 B叫做线段图 11AC的中点。2、表示法:ABBC点 B 为 AC的中点或 AB21MAC点 B 为 AC的中点,或 AC2AB,点 B 为 AC 的中点反之也成立点 B 为 AC的中点,ABBC或点 B为 AC 的中点, AB= 21AC或点 B为 AC 的中点, AC=2BC六、角1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。 要弄清定义中的两个重点角是由两条射线组成的图形; 这两条射线必须有一个公共端点。 另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。可以看出在起始位置的射线与终止位置的射线就形成了一个角。2角的平分线定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。表示法有三种:如图 12 (1)AOCBOC(2)AOB2AOC 2COB(3)AOCCOB=21AOB七、角的度量:度量角的大小,可用 “ 度” 作为度量单位。把一个圆周分成 360等份,每一份叫做一度的角。1度=60分;1分=60秒。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 34 页学习好资料欢迎下载八、角的分类:(1)锐角:小于直角的角叫做锐角(2)直角:平角的一半叫做直角(3)钝角:大于直角而小于平角的角(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。(5)周角:把一条射线,绕着它的端点顺着一个方向旋转, 当终边和始边重合时,所成的角叫做周角。(6)周角、平角、直角的关系是: l 周角=2平角=4 直角=360九、相关的角:1、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。2、互为补角:如果两个角的和是一个平角,这两个角做互为补角。3、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。4、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。十、角的性质1、对顶角相等。2、同角或等角的余角相等。3、同角或等角的补角相等。十一、相交线1、 斜线: 两条直线相交不成直角时,其中一条直线叫做另一条直线的斜线。它们的交点叫做斜足。2、两条直线互相垂直:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。3、 垂线: 当两条直线互相垂直时,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。4、垂线的性质(l)过一点有且只有一条直线与己知直线垂直。(2)直线外一点与直线上各点连结的所有线段中,垂线段最短。简单说:垂线段最短。十二、距离1、两点的距离:连结两点的线段的长度叫做两点的距离。2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线, 垂线段的长度,叫做两条平行线的距离。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 34 页学习好资料欢迎下载说明:点到直线的距离和平行线的距离实际上是两个特殊点之间的距离,它们与点到直线的垂线段是分不开的。十三、平行线1、定义:在同一平面内,不相交的两条直线叫做平行线。2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。3、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。4、平行线的判定:(1)同位角相等,两直线平行。(2)内错角相等,两直线平行。(3)同旁内角互补,两直线平行。5、平行线的性质(1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。6、如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补。注意:当角的两边平行且方向相同(或相反)时,这两个角相等。当角的两边平行且一边方向相同另一方向相反时,这两个角互补。第二章:三角形知识点:一、关于三角形的一些概念由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫三角形的边;相邻两边的公共端点叫三角形的顶点;相邻两边所组成的角叫三角形的内角,简称三角形的角。1、三角形的角平分线。三角形的角平分线是一条线段(顶点与内角平分线和对边交线间的距离)2、三角形的中线三角形的中线也是一条线段(顶点到对边中点间的距离)3三角形的高三角形的高线也是一条线段(顶点到对边的距离)注意:三角形的中线和角平分线都在三角形内。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 19 页,共 34 页学习好资料欢迎下载三、三角形三条边的关系三角形三边都不相等,叫不等边三角形;有两条边相等的叫等腰三角形;三边都相等的则叫等边三角形。等腰三角形中,相等的两条边叫腰,另一边叫底边,腰和底边的夹角叫底角,两腰的夹角叫项角。三角形接边相等关系来分类:三角形等边三角形三角形底边和腰不相等的等腰等腰三角形不等边三角形三角形用集合表示,见图 24 推论三角形两边的差小于第三边。三、三角形的内角和定理三角形三个内角的和等于 180由定理可知,三角形的二个角已知,那么第三角可以由定理求得。由定理可以知道,三角形的三个内角中,只可能有一个内角是直角或钝角。推论 1:直角三角形的两个锐角互余。三角形按角分类:钝角三角形锐角三角形斜三角形直角三角形三角形用集合表示,见图三角形一边与另一边的延长线组成的角,叫三角形的外角。推论 2:三角形的一个外角等于和它不相邻的两个内角的和。推论 3:三角形的一个外角大于任何一个和它不相邻的内角。四、全等三角形能够完全重合的两个图形叫全等形。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 20 页,共 34 页学习好资料欢迎下载两个全等三角形重合时,互相重合的顶点叫对应顶点,互相重合的边叫对应边,互相重合的角叫对应角。全等用符号“ ” 表示ABCA BC表示 A和 A,B 和 B,C 和 C是对应点。全等三角形的对应边相等;全等三角形的对应角相等。如图27,ABCA BC,则有A、B、C的对应点A、B、C;AB、BC、CA的对应边是AB、BC、CA。A,B,C的对应角是A、B、C。ABAB,BCBC,CACA;AA, BB,CC 五、全等三角形的判定1、边角边公理:有两边和它们的夹角对应相等的两个三角形全等 (可以简写成“ 边角边” 或“ SAS ” )注意:一定要是两边夹角,而不能是边边角。2、角边角公理:有两角和它们的夹边对应相等的两个三角形全等 (可以简写成“ 角边角“ 或“ ASA ” )3、推论有两角和其中一角的对边对应相等的两个三角形全等(可以简写成 “ 角角边 域“ AAS ” )4、边边边公理有三边对应相等的两个三角形全等(可以简写成 “ 边边边” 或“ SSS ” )由边边边公理可知,三角形的重要性质:三角形的稳定性。除了上面的判定定理外,“ 边边角” 或“ 角角角” 都不能保证两个三角形全等。5、直角三角形全等的判定:斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“ 斜边,直角边 ” 或“ HL” )六、角的平分线定理1、在角的平分线上的点到这个角的两边的距离相等。定理2、一个角的两边的距离相等的点,在这个角的平分线上。由定理1、2可知:角的平分线是到角的两边距离相等的所有点的集合。可以证明三角形内存在一个点,它到三角形的三边的距离相等这个点就是三角形的三条角平分线的交点(交于一点)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 21 页,共 34 页学习好资料欢迎下载在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互为逆命题,如果把其中的一个做原命题,那么另一个叫它的逆命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫互逆定理,其中一个叫另一个的逆定理。例如:“ 两直线平行,同位角相等 ” 和“ 同位角相等,两直线平行” 是互逆定理。一个定理不一定有逆定理,例如定理: “ 对顶角相等” 就没逆定理,因为 “ 相等的角是对顶角” 这是一个假命颗。七、基本作图限定用直尺和圆规来画图,称为尺规作图最基本、最常用的尺规作图通常称为基本作图,例如做一条线段等于己知线段。1、作一个角等于已知角:作法是使三角形全等( SSS ),从而得到对应角相等;2、平分已知角:作法仍是使三角形全等( SSS )从而得到对应角相等。3、经过一点作已知直线的垂线:(1)若点在已知直线上,可看作是平分已知角平角;(2)若点在已知直线外,可用类似平分已知角的方法去做:已知点 C为圆心,适当长为半径作弧交已知真线于A、B两点,再以A、B为圆心,用相同的长为半径分别作弧交于 D点,连结CD即为所求垂线。4、作线段的垂直平分线:线段的垂直平分线也叫中垂线。做法的实质仍是全等三角形( SSS )。也可以用这个方法作线段的中点。八、作图题举例重要解决求作三角形的问题1、已知两边一夹角,求作三角形2、已知底边上的高,求作等腰三角形九、等腰三角形的性质定理等腰三角形的性质定理:等腰三角形的两个底角相等(简写成 “ 等边对等角” )推论1: 等腰三角形顶角的平分线平分底边并且垂直于底边,就是说: 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。推论2:等边三角形的各角都相等,并且每一个角都等于 60例如:等腰三角形底边中线上的任一点到两腰的距离相等,因为等腰三角形底边中线就是顶角的角平分线、而角平分线上的点到角的两边距离相等 n十、等腰三角形的判定定理:如果一个三角形有两个角相,那这两个角所对的两条边也相等。(简写成“ 等角对等动” )。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 22 页,共 34 页学习好资料欢迎下载推论1:三个角都相等的三角形是等边三角形推论2:有一个角等于 60的等腰三角形是等边三角形推论3:在直角三角形中,如果一个锐角等于 3O ,那么它所对的直角边等于斜边的一半。十一、线段的垂直平分线定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。就是说:线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。十二、轴对称和轴对称图形把一个图形沿着某一条直线折叠二如果能够与另一个图形重合,那么就说这两个图形关于这条直线轴对称,两个图形中的对应点叫关于这条直线的对称点,这条直线叫对称轴。两个图形关于直线对称也叫轴对称。定理1:关于某条直线对称的两个图形是全等形。定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。定理3:两个图形关于某条直线对称,如果它们的对应线段或延长相交。那么交点在对称轴上。逆定理:如果两个图形的对应点连线被一条直线垂直平分,那么这两个图形关于这条直线对称。如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是对称轴。例如:等腰三角形顶角的分角线就具有上面所述的特点,所以等腰三角形顶角的分角线是等腰三角形的一条对称轴,而等腰三角形是轴对称图形。十三、勾股定理勾股定理:直角三角形两直角边 a、b的平方和等于斜边 c的平方:cba22勾股定理的逆定理:如果三角形的三边长 a、b、c有下面关系:222cba那么这个三角形是直角三角形第三章:四边形知识点:一、多边形1、n 边形的对角线共有)3(21nn条。说明:利用上述公式,可以由一个多边形的边数计算出它的对角线的条数,也可以由一个多边形精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 23 页,共 34 页学习好资料欢迎下载的对角线的条数求出它的边数。2、多边形内角和定理: n边形内角和等于( n2)180。3、多边形内角和定理的推论: n边形的外角和等于 360。二、平行四边形1、平行四边形:两组对边分别平行的四边形叫做平行四边形。2、平行四边形性质定理 1:平行四边形的对角相等。3、平行四边形性质定理 2:平行四边形的对边相等。4、平行四边形性质定理 2推论:夹在平行线间的平行线段相等。5、平行四边形性质定理 3:平行四边形的对角线互相平分。6、平行四边形判定定理 1:一组对边平行且相等的四边形是平行四边形。7、平行四边形判定定理 2:两组对边分别相等的四边形是平行四边形。8、平行四边形判定定理 3:对角线互相平分的四边形是平行四边形。9、平行四边形判定定理 4:两组对角分别相等的四边形是平行四边形。三、矩形矩形是特殊的平行四边形,从运动变化的观点来看,当平行四边形的一个内角变为90时,其它的边、角位置也都随之变化。因此矩形的性质是在平行四边形的基础上扩充的。1、矩形:有一个角是直角的平行四边形叫做短形(通常也叫做长方形)2、矩形性质定理 1:矩形的四个角都是直角。3矩形性质定理 2:矩形的对角线相等。4、矩形判定定理 1:有三个角是直角的四边形是矩形。说明:因为四边形的内角和等于 360度,已知有三个角都是直角,那么第四个角必定是直角。5、矩形判定定理 2:对角线相等的平行四边形是矩形。说明:要判定四边形是矩形的方法是:法一:先证明出是平行四边形,再证出有一个直角(这是用定义证明)法二:先证明出是平行四边形,再证出对角线相等(这是判定定理 1)法三:只需证出三个角都是直角。 (这是判定定理 2)四、菱形1、菱形:有一组邻边相等的平行四边形叫做菱形。2、菱形的性质 1:菱形的四条边相等。3、菱形的性质 2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 24 页,共 34 页学习好资料欢迎下载4、菱形判定定理 1:四边都相等的四边形是菱形。5、菱形判定定理 2:对角线互相垂直的平行四边形是菱形。说明:要判定四边形是菱形的方法是:法一:先证出四边形是平行四边形,再证出有一组邻边相等。(这就是定义证明) 。法二:先证出四边形是平行四边形,再证出对角线互相垂直。(这是判定定理 2)法三:只需证出四边都相等。 (这是判定定理 1)(五)正方形正方形是特殊的平行四边形,当邻边和内角同时运动时,又能使平行四边形的一个内角为直角且邻边相等,这样就形成了正方形。1、正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。2、正方形性质定理 1:正方形的四个角都是直角,四条边都相等。3、 正方形性质定理 2: 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。4、正方形判定定理互:两条对角线互相垂直的矩形是正方形。5、正方形判定定理 2:两条对角线相等的菱形是正方形。注意:要判定四边形是正方形的方法有方法一:第一步证出有一组邻边相等;第二步证出有一个角是直角;第三步证出是平行四边形。(这是用定义证明)方法二:第一步证出对角线互相垂直;第二步证出是矩形。(这是判定定理 1)方法三:第一步证出对角线相等;第二步证出是菱形。(这是判定定理 2)六、梯形1、梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。2、梯形的底:梯形中平行的两边叫做梯形的底(通常把较短的底叫做上底,较长的边叫做下底)3、梯形的腰:梯形中不平行的两边叫做梯形的腰。4、梯形的高:梯形有两底的距离叫做梯形的高。5、直角梯形:一腰垂直于底的梯形叫做直角梯形。6、等腰梯形:两腰相等的梯形叫做等腰梯形。7、等腰梯形性质定理 1:等腰梯形在同一底上的两个角相等。8、等腰梯形性质定理 2:等腰梯形的两条对角线相等。9、等腰梯形的判定定理 l。 :在同一个底上钩两个角相等的梯形是等腰梯形。10、等腰梯形的判定定理 2:对角线相等的梯形是等腰梯形。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 25 页,共 34 页学习好资料欢迎下载研究等腰梯形常用的方法有:化为一个等腰三角形和一个平行四边形;或两个全等的直角三角形和一矩形;或作对角线的平行线交下底的延长线于一点;或延长两腰交于一点。七、中位线1、三角形的中位线连结三角形两边中点的线段叫做三角形的中位线。说明:三角形的中位线与三角形的中线不同。2、梯形的中位线:连结梯形两腰中点的线段叫做梯形中位线。3、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。4、梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半。第四章:相似形知识点:一、比例线段1、比:选用同一长度单位量得两条线段。 a、b 的长度分别是 m、n,那么就说这两条线段的比是a:bm:n(或nmba)2、比的前项,比的后项:两条线段的比 a:b中。a叫做比的前项, b叫做比的后项。说明:求两条线段的比时,对这两条线段要用同一单位长度。3、比例:两个比相等的式子叫做比例,如dcba4、比例外项:在比例dcba(或 a:bc:d)中 a、d叫做比例外项。5、比例内项:在比例dcba(或 a:bc:d)中 b、c叫做比例内项。6、第四比例项:在比例dcba(或 a:bc:d)中,d 叫 a、b、c 的第四比例项。7、比例中项:如果比例中两个比例内项相等, 即比例为abba(或 a:b=b:c 时,我们把 b叫做 a和 d 的比例中项。8、比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比, 那么,这四条线段叫做成比例线段,简称比例线段。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 26 页,共 34 页学习好资料欢迎下载9、比例的基本性质:如果 a:bc:d 那么 adbc逆命题也成立,即如果 adbc,那么 a:bc:d10、比例的基本性质推论:如果 a:b=b:d那么 b2=ad,逆定理是如果 b2=ad那么 a:b=b:c。说明:两个论是比积相等的式子叫做等积式。比例的基本性质及推例式与等积式互化的理论依据。11、合比性质:如果dcba,那么ddcbba12等比性质:如果nmdcba, (0mdb) ,那么bandbmca说明:应用等比性质解题时常采用设已知条件为 k ,这种方法思路单一,方法简单不易出错。13、黄金分割把一条线段分成两条线段,使较长的线段是原线段与较小的线段的比例中项,叫做把这条线段黄金分割。说明:把一条线段黄金分割的点,叫做这条线段的黄金分割点,在线段AB 上截取这条线段的215倍得到点 C,则点 C 就是 AB的黄金分割点。三、相似三角形1、相似三角形:两个对应角相等,对应边成比例的三角形叫做相似三角形。说明:证两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。2、相似比:相似三角形对应边的比 k,叫做相似比(或叫做相似系数) 。3、相似三角形的基本定理:平分于三角形一边的直线和其它两边 (或两边的延长线)相交,所构成的三角形与原三角形相似。说明:这个定理反映了相似三角形的存在性,所以有的书把它叫做相似三角形的存在定理,它是证明三角形相似的判定定理的理论基础。4、三角形相似的判定定理:(1)判定定理 1:如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么就两个三角形相似。可简单说成:两角对应相等,两三角形相似。(2) 判定定理 2: 如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简单说成:两边对应成比例且夹角相等,两三角形相似。(3)判定定理 3:如果一个三角形的三条边与另一个三角形的三条边对应成比例, 那么这两个三角形相似,可简单说成:三边对应成比例,两三角形相似。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 27 页,共 34 页学习好资料欢迎下载(4) 直角三角形相似的判定定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。说明:以上四个判定定理不难证明,以下判定三角形相似的命题是正确的,在解题时,也可以用它们来判定两个三角形的相似。第一:顶角(或底角)相等的两个等腰三角形相似。第二:腰和底对应成比例的两个等腰三角形相似。第三:有一个锐角相等的两个直角三角形相似。第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形相似。5、相似三角形的性质:(1) 相似三角形性质 1: 相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。(2)相似三角形性质 2:相似三角形周长的比等于相似比。说明:以上两个性质简单记为:相似三角形对应线段的比等于相似比。(3)相似三角形面积的比等于相似比的平方。说明:两个三角形相似,根据定义可知它们具有对应角相等、对应边成比例这个性质。6、介绍有特点的两个三角形(1)共边三角形指有一条公共边的两个三角形叫做共边三角形。(2)共角三角形有一个角相等或互补的两个三角形叫做共角三角形,如图46 (3)公边共角有一个公共角,而且还有一条公共边的两个三角形叫做公边共角三角形。说明:具有公边共角的两个三角形相似,则公边的平方等于叠在一条直线上的两边的乘积:如图47若ACDABC,则 AC2AD AB第五章:解直角三角形知识点:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 28 页,共 34 页学习好资料欢迎下载一、锐角三角函数:在直角三角形 ABC中,C 是直角,如图 51 1、正弦:把锐角 A 的对边与斜边的比叫做 A的正弦,记作caAsin2、余弦:把锐角 A 的邻边与斜边的比叫做 A的余弦,记作cbAcos3、正切:把锐角 A 的对边与邻边的比叫做 A的正切,记作baAtan4、余切:把锐角 A 的邻边与对边的比叫做 A的余切,记作abAcot说明:由定义可以看出 tanA cotA l(或写成AAcot1tan)5、锐角三角函数:锐角 A的正弦、余弦、正切、余切都叫做 A 的锐角三角函数说明:锐角三角函数都不能取负值。0 sinA l; 0cosA ;l8、三角函数值的变化规律(1)当角度在 0 90 间变化时,正弦值(正切值随着角度的增大(或减小)而增大(或减小)(2)当角度在 090间变化时,余弦值(余切值)随着角度的增大(或减小)而减小(或增大) 。9、同角三角函数关系公式(1)1cossin22BA; (2cot1tan; (3) tanAAAcossin10一些特殊角的三角函数值二、解直角三角形由直角三角形中,除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。若直角三角形 ABC 中,C90 ,那么 A、B、C,a,b,c 中除C90 外,其余 5 个元素之间有关系:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 29 页,共 34 页学习好资料欢迎下载(l)222cba; (2)A十B90;(3)caAsin;cbAcos;baAtan;abAcot所以,只要知道其中的 2个元素(至少有一个是边) ,就可以求出其余 3 个未知数。第六章:圆知识点:一、圆1、圆的有关性质在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫圆,固定的端点 O 叫圆心,线段 OA叫半径。由圆的意义可知:圆上各点到定点(圆心 O)的距离等于定长的点都在圆上。就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。圆心相同,半径不相等的两个圆叫同心圆。能够重合的两个圆叫等圆。同圆或等圆的半径相等。在同圆或等圆中,能够互相重合的弧叫等弧。二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。2、反证法反证法的三个步骤:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 30 页,共 34 页学习好资料欢迎下载假设命题的结论不成立;从这个假设出发,经过推理论证,得出矛盾;由矛盾得出假设不正确,从而肯定命题的结论正确。例如:求证三角形中最多只有一个角是钝角。证明:设有两个以上是钝角则两个钝角之和180与三角形内角和等于 180矛盾。不可能有二个以上是钝角。即最多只能有一个是钝角。三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推理 1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。弦的垂直平分线经过圆心,并且平分弦所对的两条弧。平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。四、圆心角、弧、弦、弦心距之间的关系圆是以圆心为对称中心的中心对称图形。实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。五、圆周角顶点在圆上,并且两边都和圆相交的角叫圆周角。推理 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。推理 2:半圆(或直径)所对的圆周角是直角; 90的圆周角所对的弦是直径。推理 3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。七、直线和圆的位置关系1、直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫圆的割线精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 31 页,共 34 页学习好资料欢迎下载直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫圆的切线,唯一的公共点叫切点。直线和圆没有公共点时,叫直线和圆相离。2、若圆的半径为 r,圆心到直线的距离为 d,则:直线和圆相交dr;直线和圆相切dr;直线和圆相离dr;直线和圆相交dr例如:图 62中,直线与圆 O 相割,有:rd图 63中,直线与圆 O 相切,rd图 64中,直线与圆 O 相离,rd八、切线的判定和性质切线的判定:经过半径的外端并且垂直于这条半径的直线是圆的切线。切线的性质:圆的切线垂直于经过切点的半径推理 1:经过圆心且垂直干切线的直线必经过切点。推理 2:经过切点且垂直于切线的直线必经过圆心。九、三角形的内切圆要求会作图,使它和己知三角形的各边都相切分角线上的点到角的两边距离相等。两条分角线的交点就是圆心。这样作出的圆是三角形的内切圆,其圆心叫内心,三角形叫圆的外切三角形。和多边形各边都相切的圆叫多边形的内切圆,多边形叫圆的外切多边形。十、切线长定理经过圆外一点可作圆的两条切线。在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫这点到圆的切线长。切线长定理从圆外一点引圆的两条切线,它们的切线长相等。圆心和这一点的连线平分两条切线的夹角,如图 66 B、C 为切点,O 为圆心。ABAC, 12 十三、圆和圆的位置关系如图 69 若连心线长为 d,两圆的半径分别为 R,r,则:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 32 页,共 34 页学习好资料欢迎下载1、两圆外离d Rr;2、两圆外切d = Rr;3、两圆相交RrdRr(Rr)4、两圆内切d = Rr; (Rr)5、两圆内含dRr。 (Rr)定理相交两圆的连心线垂直平分丙两圆的公共弦。如图 610,O1,O2为圆心,则有:ABO1O2,且 AB被 O1O2平分二十、圆周长、弧长1、圆周长 C2R ;2、弧长180RnL二十一、圆扇形,弓形的面积l、圆面积:2RS;2、扇形面积:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。在半径为 R 的圆中,圆心角为 n 的扇形面积 S扇形的计算公式为:3602RnS扇形注意:因为扇形的弧长180RnL。所以扇形的面积公式又可写为LRS21扇形(3)弓形的面积由弦及其所对的弧组成的圆形叫做弓形。弓形面积可以在计算扇形面积和三角形面积的基础上求得。如果弓形的弧是劣弧,则弓形面积等于扇形面积减去三角形面积。若弓形的弧是优弧,则弓形面积等于扇形面积加上三角形面积。二十二、圆柱和圆锥的侧面展开图1、圆柱的侧面展开图圆柱可以看作是由一个矩形旋转得到的,如把矩形 ABCD 绕边 AB旋转一周得到的图形是一个圆柱。 (图 6 一 16)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 33 页,共 34 页学习好资料欢迎下载AB叫圆柱的轴,圆柱侧面上平行轴的线段 CD, C D ,都叫圆柱的母线。圆柱的母线长都相等,等于圆柱的高。圆柱的两个底面是平行的。圆柱的侧面展开图是一个长方形,如图 617,其中 AB=高,AC=底面圆周长。S侧面=2 Rh圆柱的轴截面是长方形一边长为 h,一边长为 2RR是圆柱底半径,h 是圆柱的高。见图 68 (2)圆锥的侧面展开图圆锥可以看作由一个直角三角形旋转得到。如图 619,把 RtOAS绕直线 SO旋转一周得到的图形就是圆锥。旋转轴 SO 叫圆锥的轴,连通过底面圆的圆心,且垂直底面。连结圆锥顶点和底面圆的任意一点的 SA 、SA 、都叫圆锥的母线,母线长都相等。圆锥的侧面展开图如图 6一 19 是一个扇形 SAB半径是母线长,AB 是 2R 。 (底面的周长) ,所以圆锥侧面积为 S侧面= RL精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 34 页,共 34 页
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号