资源预览内容
第1页 / 共9页
第2页 / 共9页
第3页 / 共9页
第4页 / 共9页
第5页 / 共9页
第6页 / 共9页
第7页 / 共9页
第8页 / 共9页
第9页 / 共9页
亲,该文档总共9页全部预览完了,如果喜欢就下载吧!
资源描述
学习必备欢迎下载一元一次不等式组知识讲解要点、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集2. 一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集3. 一元一次不等式组的解集表示方法不等式组的公共解集 ,可用口诀 : 大大取大,(两个解集都是大于,取较大的作为不等式组的解集)小小取小;(两个解集都是小于,取较小的作为不等式组的解集)大小小大取中间;(解集大于的数较小,小于号的数较大,解集取他们中间)大大小小取不了(解集大于的数较大,小于号的数较小,解集无解)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 9 页学习必备欢迎下载【典型例题】类型一、不等式组的概念例若不等式组3212bxax的解集是 x,则) 1)(1(ba的值为举一反三:【变式】直接写出解集:(1)2,3xx的解集是 _; (2)2,3xx的解集是 _;(3)2,3xx的解集是 _; (4)2,3xx的解集是 _类型二、解一元一次不等式组例 2. 解下列不等式组1.3315x2.举一反三: 解不等式组,并把解集在数轴上表示出来1、513(1)131722xxxx 2、315(1)465633xxxx(32)41214xxxx精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 9 页学习必备欢迎下载 3. 32451312xxxxx 4、21423132(21)xxxxx5. 已知,x满足1411533xxx,化简52xx类型三:不等式组特定解例解不等式组并写出它的所有非负整数解举一反三:1.求不等式组2(3)81(3)24xxxx的整数解精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 9 页学习必备欢迎下载2. 求不等式组的正整数解。类型四:不等式组列式例代数式35x的值是否能同时大于代数式23x和1x的值?说明理由举一反三:1.、x 取哪些整数时,代数式与代数式的差不小于 6 而小于 8。2.代数式2131x的值不大于321x的值且不小于7,求x的范围。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 9 页学习必备欢迎下载类型五:含参方程与不等式组例 1. 当 k 取何值时,方程组52,53yxkyx的解 x,y 都是负数举一反三:1.已知122,42kyxkyx中的 x, y 满足 0yx1,求 k 的取值范围2. 已知关于x,y 的方程组34, 72myxmyx的解为正数,求m 的取值范围3. 求使方程组24563xymxym的解x、y都是正数的m的取值范围精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 9 页学习必备欢迎下载4. 方程组323ayxyx的解为负数,求a的范围 . 5.m 为何整数时, 方程组的解是非负数6.已知关于x, y 的方程组134, 123pyxpyx的解满足xy,求 p 的取值范围类型六:解特殊的一元一次不等式组例:求不等式(2x1) (x+3) 0 的解集精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 9 页学习必备欢迎下载举一反三:1. 求不等式( 2x3) (x+1) 0 的解集2. 求不等式11302xx的解集类型七:含参不等式组解例解不等式组3(2)423xxaxx无解则a 的取值范围是 ( ) Aa1 Bal Ca 1 Da1 举一反三:1. 若关于x的不等式组41320xxxa的解集为x2,试求a的取值范围精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 9 页学习必备欢迎下载2. 若关于x的不等式0721xmx的整数解共有4 个,则m的取值范围是()A76mB76mC76mD76m3.若不等式组12xxk有解,则k 的取值范围是( )(A) k2 (B)k2 (C)k1 (D)1k2 4.等式组1, 159mxxx的解集是x2,则 m 的取值范围是 ( )(A) m2 (B)m2 (C)m1 (D)m1 5. k 满足 _时,方程组2 ,4xykxy中的 x 大于 1,y 小于 16.关于 x 的不等式组123, 0xax的整数解共有5 个,求 a 的取值范围7. 若关于 x 的不等式组axxxx322, 3215只有 4 个整数解,求a 的取值范围精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 9 页学习必备欢迎下载例如果不等式组2223xaxb的解集是01x,那么ab的值为举一反三:1. 如果一元一次不等式组3xxa的解集为3x则a的取值范围是( ) A3a Ba3 Ca3 D3a2. 若不等式组0,122xaxx有解,则a的取值范围是()A1a B1a C1a D1a3. 关于x的不等式组12xmxm的解集是1x,则m = 4.已知关于x的不等式组0521xax ,只有四个整数解,则实数a的取值范围是精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 9 页
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号