资源预览内容
第1页 / 共73页
第2页 / 共73页
第3页 / 共73页
第4页 / 共73页
第5页 / 共73页
第6页 / 共73页
第7页 / 共73页
第8页 / 共73页
第9页 / 共73页
第10页 / 共73页
亲,该文档总共73页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
进入百度间下载全套课件进入百度间下载全套课件1 空间直角坐标系 2 两矢量和在轴上的投影3 矢量积的分配律的证明 4 混合积的几何意义 5 一般柱面 F(x,y)=0 6 一般柱面 F(y,z)=0 7 椭圆柱面 8 双曲柱面 9 抛物柱面 10 旋转面的方程11 双叶旋转双曲面 12 单叶旋转双曲面 13 旋转锥面 14 旋转抛物面15 环面 16 椭球面 17 椭圆抛物面 18 双曲抛物面 19 双曲面的渐近锥面 20 单叶双曲面是直纹面 21 双曲抛物面是直纹面 22 一般锥面23 空间曲线圆柱螺线 24 空间曲线在坐标面上的投影25 空间曲线作为投影柱面的交线(1)26 空间曲线作为投影柱面的交线(2)27 作出平面y=0 , z=0,3x+y =6, 3x+2y =12 和 x+y+z = 6所围成的立体图形 主主 目目 录录( 1 30 )( 1 30 )282930.八个卦限八个卦限zyx01. 空间直角坐标系空间直角坐标系空间直角坐标系空间直角坐标系八个卦限八个卦限zyx0. 1. 空间直角坐标系空间直角坐标系空间直角坐标系空间直角坐标系八个卦限八个卦限zyx0MxyNz(x,y,z)M (x,y,z)点的坐标点的坐标. 1. 空间直角坐标系空间直角坐标系空间直角坐标系空间直角坐标系0zyx0MxyNz(x,y,z)(x,y,z)坐标和点坐标和点 M1. 空间直角坐标系空间直角坐标系空间直角坐标系空间直角坐标系.0zyx0NM点到坐标面的距离点到坐标面的距离M点到原点的距离点到原点的距离M点到坐标轴的距离点到坐标轴的距离PQ到到z轴轴:到到x轴轴:到到y轴轴:M(x,y,z)d1d2d3.1. 空间直角坐标系空间直角坐标系空间直角坐标系空间直角坐标系.x0zyM点的对称点点的对称点关于关于xoy面面:(x,y,z) (x,y,-z)关于关于x轴轴:(x,y,z) (x,-y,-z)Q0关于原点关于原点:(x,y,z) (-x,-y,-z)1. 空间直角坐标系空间直角坐标系空间直角坐标系空间直角坐标系.M(x,y,z)xRP(x,y,-z)(x,-y,-z)(-x,-y,-z)uABc两矢量的和在轴上的投影等于投影的和两矢量的和在轴上的投影等于投影的和ABc2. 两矢量和在轴上的投影两矢量和在轴上的投影AcuABcB.两矢量的和在轴上的投影等于投影的和两矢量的和在轴上的投影等于投影的和2. 两矢量和在轴上的投影两矢量和在轴上的投影引理引理ca将矢量将矢量a一投一转(转一投一转(转900),),证明证明 引入引入 证毕证毕(a+b) c=(a c)+(b c)c03.3. 证明证明证明证明矢量积的分配律矢量积的分配律矢量积的分配律矢量积的分配律: 两矢方向两矢方向: 一致一致;a2|a2|= |a1|a2得得a2(a+b) c=(a c)+(b c)cbaa+b(a+b) ca c由矢量和的平行四边形法则,由矢量和的平行四边形法则,得证得证c03.3. 证明证明证明证明矢量积的分配律矢量积的分配律矢量积的分配律矢量积的分配律: .b c将平行四边形一投一转将平行四边形一投一转(a+b) c=(a c)+(b c)bc a baS=|a b| h4.4. 混合混合积的几何意义积的几何意义h ac a bb4.4. 混合混合积的几何意义积的几何意义.h ac a bb4.4. 混合混合积的几何意义积的几何意义.其混合积其混合积 abc = 0三矢三矢 a, b, c共面共面因此,因此,xzy0母线母线F( x,y )=0z = 0准线准线 (不含不含z)M(x,y,z)N(x, y, 0)S曲面曲面S上每一点都满足方程;上每一点都满足方程;曲面曲面S外的每一点都不满足方程外的每一点都不满足方程F F( (x,yx,y) )= =0 0表示母线平行于表示母线平行于表示母线平行于表示母线平行于z z z z轴的柱面轴的柱面轴的柱面轴的柱面点点N满足方程,故满足方程,故点点M满足方程满足方程5.5. 一般一般柱面柱面柱面柱面 F F( (x,yx,y) )= =0 0母线母线准线准线(不含不含x)F( y, z )=0x = 0xzy0F F( (y,zy,z) )= =0 0表示母线平行于表示母线平行于表示母线平行于表示母线平行于x x轴的柱面轴的柱面轴的柱面轴的柱面6.6. 一般一般柱面柱面柱面柱面 F F( (y, zy, z) )= =0 0abzxyo7.7. 椭圆椭圆柱面柱面柱面柱面zxy = 0yo8.8. 双曲双曲柱面柱面柱面柱面zxyo9.9. 抛物抛物柱面柱面柱面柱面曲线曲线 CCy zo绕绕 z轴轴10.10. 旋转旋转面面面面的方程的方程曲线曲线 CxCy zo绕绕 z轴轴.10.10. 旋转旋转面面面面的方程的方程曲线曲线 C旋转一周得旋转一周得旋转曲面旋转曲面 SCSMNzPy zo绕绕 z轴轴.f (y1, z1)=0M(x,y,z)10.10. 旋转旋转面面面面的方程的方程.x S曲线曲线 C旋转一周得旋转一周得旋转曲面旋转曲面 SxCSMNzP.绕绕 z轴轴.f (y1, z1)=0M(x,y,z)f (y1, z1)=0f (y1, z1)=010.10. 旋转旋转面面面面的方程的方程.y zo Sx0y11.11. 双叶旋转双曲面双叶旋转双曲面双叶旋转双曲面双叶旋转双曲面绕绕 x 轴一周轴一周x0zy. .绕绕 x 轴一周轴一周11.11. 双叶旋转双曲面双叶旋转双曲面双叶旋转双曲面双叶旋转双曲面x0zy.11.11. 双叶旋转双曲面双叶旋转双曲面双叶旋转双曲面双叶旋转双曲面.绕绕 x 轴一周轴一周axyo12.12. 单叶旋转双曲面单叶旋转双曲面单叶旋转双曲面单叶旋转双曲面上题双曲线上题双曲线绕绕 y 轴一周轴一周axyoz. .上题双曲线上题双曲线绕绕 y 轴一周轴一周12.12. 单叶旋转双曲面单叶旋转双曲面单叶旋转双曲面单叶旋转双曲面a.xyoz.12.12. 单叶旋转双曲面单叶旋转双曲面单叶旋转双曲面单叶旋转双曲面上题双曲线上题双曲线绕绕 y 轴一周轴一周13.13. 旋转锥面旋转锥面两条相交直线两条相交直线绕绕 x 轴一周轴一周x yo.两条相交直线两条相交直线绕绕 x 轴一周轴一周x yoz13.13. 旋转锥面旋转锥面x yoz.两条相交直线两条相交直线绕绕 x 轴一周轴一周得旋转锥面得旋转锥面.13.13. 旋转锥面旋转锥面yoz14.14. 旋转抛物面旋转抛物面旋转抛物面旋转抛物面抛物线抛物线绕绕 z 轴一周轴一周yoxz. .抛物线抛物线绕绕 z 轴一周轴一周14.14. 旋转抛物面旋转抛物面旋转抛物面旋转抛物面y.oxz生活中见过这个曲面吗?生活中见过这个曲面吗?.14.14. 旋转抛物面旋转抛物面旋转抛物面旋转抛物面抛物线抛物线绕绕 z 轴一周轴一周得旋转抛物面得旋转抛物面卫星接收装置卫星接收装置卫星接收装置卫星接收装置14. 例例.15.15.环面环面环面环面yxorR绕绕 y轴轴 旋转所成曲面旋转所成曲面15.15.环面环面环面环面z绕绕 y轴轴 旋转所成曲面旋转所成曲面yxo.15.15.环面环面环面环面z绕绕 y轴轴 旋转所成曲面旋转所成曲面环面方程环面方程.生活中见过这个曲面吗?生活中见过这个曲面吗?yxo.救生圈救生圈.15.15.环面环面环面环面截痕法截痕法用用z = h截曲面截曲面用用y = m截曲面截曲面用用x = n截曲面截曲面abcyx zo16.16. 椭球面椭球面椭球面椭球面xzy0截痕法截痕法用用z = a截曲面截曲面用用y = b截曲面截曲面用用x = c截曲面截曲面17.17. 椭圆抛物面椭圆抛物面椭圆抛物面椭圆抛物面xzy0截痕法截痕法用用z = a截曲面截曲面用用y = b截曲面截曲面用用x = c截曲面截曲面17.17. 椭圆抛物面椭圆抛物面椭圆抛物面椭圆抛物面.用用z = a截曲面截曲面用用y = 0截曲面截曲面用用x = b截曲面截曲面xzy0截痕法截痕法 (马鞍面)(马鞍面)18.18. 双曲抛物面双曲抛物面 截痕法截痕法.18.18. 双曲抛物面双曲抛物面 (马鞍面)(马鞍面)xzy0用用z = a截曲面截曲面用用y = 0截曲面截曲面用用x = b截曲面截曲面截痕法截痕法.18.18. 双曲抛物面双曲抛物面 (马鞍面)(马鞍面)xzy0用用z = a截曲面截曲面用用y = 0截曲面截曲面用用x = b截曲面截曲面 单叶单叶:双叶双叶:. .yx zo 在平面上,双曲线有渐近线。在平面上,双曲线有渐近线。 相仿,相仿,单叶双曲面单叶双曲面和和双叶双曲面双叶双曲面有有渐近锥面渐近锥面。 用用z=z=h h去截它们,当去截它们,当| |h h| |无限增大时,无限增大时,双曲面双曲面的截口椭圆与它的的截口椭圆与它的渐进锥面渐进锥面 的的截口椭圆任意接近,即:截口椭圆任意接近,即:双曲面和锥面任意接近。双曲面和锥面任意接近。渐近锥面:渐近锥面:19.19. 双曲面的渐进双曲面的渐进双曲面的渐进双曲面的渐进锥锥面面面面 直纹面在建筑学上有意义直纹面在建筑学上有意义直纹面在建筑学上有意义直纹面在建筑学上有意义含两个直母线系含两个直母线系含两个直母线系含两个直母线系 例如,储水塔、例如,储水塔、电视塔等建筑都电视塔等建筑都有用这种结构的。有用这种结构的。.20.20. 单叶双曲面是直纹面单叶双曲面是直纹面单叶双曲面是直纹面单叶双曲面是直纹面 含两个直母线系含两个直母线系含两个直母线系含两个直母线系21. 21. 双曲抛物面是直纹面双曲抛物面是直纹面双曲抛物面是直纹面双曲抛物面是直纹面 n次齐次方程次齐次方程F(x,y,z)= 0的图形是以原点为顶点的锥面;的图形是以原点为顶点的锥面;方程方程 F(x,y,z)= 0是是 n次齐次的:次齐次的:准线准线顶点顶点n次齐次方程次齐次方程F(x,y,z)= 0.反之,以原点为顶点的锥面的方程是反之,以原点为顶点的锥面的方程是锥面是直纹面锥面是直纹面x0z yt是任意数是任意数22.22. 一般锥一般锥面面面面23.23. 空间曲线空间曲线空间曲线空间曲线圆柱螺线圆柱螺线P同时又在平行于同时又在平行于z轴的方向轴的方向等速地上升。等速地上升。其轨迹就是圆柱螺线。其轨迹就是圆柱螺线。 圆柱面圆柱面yz0xa x = y =z =acos tbtM(x,y,z)asin ttM螺线从点螺线从点P Q当当 t 从从 0 2 ,叫螺距叫螺距N.Q(移动及转动都是等速进(移动及转动都是等速进行,所以行,所以z与与t t成正比。成正比。) )点点P在圆柱面上等速地绕在圆柱面上等速地绕z轴旋转;轴旋转; 1.解解yxzo得得交线交线L:24. 24. 空间曲线在坐标面上的投影空间曲线在坐标面上的投影空间曲线在坐标面上的投影空间曲线在坐标面上的投影由由z =0.1yxzo解解L.得得交线交线L:24. 24. 空间曲线在坐标面上的投影空间曲线在坐标面上的投影空间曲线在坐标面上的投影空间曲线在坐标面上的投影.投影柱面投影柱面由由 L:xz y0( )25. 25. 空间曲线作为投影柱面的交线空间曲线作为投影柱面的交线空间曲线作为投影柱面的交线空间曲线作为投影柱面的交线(1)(1) 消去消去zy2 = 4x y2 = 4x L:xz y0( ) 消去消去z(消去消去x )25. 25. 空间曲线作为投影柱面的交线空间曲线作为投影柱面的交线空间曲线作为投影柱面的交线空间曲线作为投影柱面的交线(1)(1).y2+(z 2)2 = 4y2+(z 2)2 = 4y2 = 4x y2 = 4x L:L:xz y0L转动坐标系,有下页图( )转动坐标系,有下页图. 消去消去z(消去消去x ).y2+(z 2)2 = 4y2 = 4x y2+(z 2)2 = 4y2 = 4x 25. 25. 空间曲线作为投影柱面的交线空间曲线作为投影柱面的交线空间曲线作为投影柱面的交线空间曲线作为投影柱面的交线(1)(1)L:Lxz y0y2+(z 2)2 = 4y2 = 4x (消去消去z)y 2 + (z 2)2 = 4 (消去消去x)y2 = 4x 26. 空间曲线作为投影柱面的交线空间曲线作为投影柱面的交线空间曲线作为投影柱面的交线空间曲线作为投影柱面的交线(2)(2)666x+y+z=63x+y=6227. 27. 作图练习作图练习x0z y 平面平面y=0 , z=0,3x+y =6, 3x+2y =12 和和x+y+z =6所围成的立体图所围成的立体图666x+y+z=63x+y=62.x0z y 平面平面y=0 , z=0,3x+y =6, 3x+2y =12 和和x+y+z =6所围成的立体图所围成的立体图27. 27. 作图练习作图练习3x+y=63x+2y=12x+y+z=6.666x0z y42 平面平面y=0 , z=0,3x+y =6, 3x+2y =12 和和x+y+z =6所围成的立体图所围成的立体图27. 27. 作图练习作图练习3x+y=63x+2y=12x+y+z=6.666x0z y42 平面平面y=0 , z=0,3x+y =6, 3x+2y =12 和和x+y+z =6所围成的立体图所围成的立体图27. 27. 作图练习作图练习42x+y+z=6.x0z y666 平面平面y=0 , z=0,3x+y =6, 3x+2y =12 和和x+y+z =6所围成的立体图所围成的立体图27. 27. 作图练习作图练习42.x0z y666 平面平面y=0 , z=0,3x+y =6, 3x+2y =12 和和x+y+z =6所围成的立体图所围成的立体图27. 27. 作图练习作图练习aa xz y028.28. 作图练习作图练习z = 0y = 0x = 0aaxz y028.28. 作图练习作图练习.aaxz y0学画草图学画草图学画草图学画草图28.28. 作图练习作图练习.a111yx029.29. 作图练习作图练习z 0xz yaaa30.30. 作图练习作图练习0xz yaaa30.30. 作图练习作图练习.0xz yaaa30.30. 作图练习作图练习.z=0x=0y=0aaa30.30. 作图练习作图练习.0xz y问题:问题:问题:问题:这是个怎样的立体?这是个怎样的立体?这是个怎样的立体?这是个怎样的立体?这是个七面体这是个七面体
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号