资源预览内容
第1页 / 共6页
第2页 / 共6页
第3页 / 共6页
第4页 / 共6页
第5页 / 共6页
第6页 / 共6页
亲,该文档总共6页全部预览完了,如果喜欢就下载吧!
资源描述
精品资料欢迎下载分式方程的增根与无解分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解现举例说明如下:例 1 解方程2344222xxxx解:方程两边都乘以(x+2) (x-2 ) ,得 2(x+2)-4x=3 (x-2 ) 解这个方程,得x=2经检验:当x=2 时,原方程无意义,所以x=是原方程的增根所以原方程无解【说明】 显然,方程中未知数x 的取值范围是x 2 且 x -2而在去分母化为方程后,此时未知数x 的取值范围扩大为全体实数所以当求得的x 值恰好使最简公分母为零时,x 的值就是增根本题中方程的解是x2,恰好使公分母为零,所以x2 是原方程的增根,原方程无解例 2 解方程22321xxxx解:去分母后化为x13 x2(2x) 整理得 0x8因为此方程无解,所以原分式方程无解【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了由此可见,分式方程无解不一定就是产生增根例 3(2007 湖北荆门) 若方程32xx=2mx无解,则 m=解:原方程可化为32xx=2mx方程两边都乘以x2,得 x 3=m 解这个方程,得x=3m 因为原方程无解,所以这个解应是原方程的增根即x=2,所以 2=3m ,解得 m=1 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6 页精品资料欢迎下载故当 m=1时,原方程无解【说明】因为同学们目前所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以如果这个根是原方程的增根,那么原方程无解 但是同学们并不能因此认为有增根的分式方程一定无解,随着以后所学知识的加深,同学们便会明白其中的道理,此处不再举例例 4 当 a 为何值时,关于x 的方程223242axxxx会产生增根?解:方程两边都乘以(x+2) (x-2 ) ,得 2(x2) ax3(x2)整理得( a1)x 10 若原分式方程有增根,则x 2 或 2 是方程的根把 x2 或 2 代入方程中,解得,a 4 或 6【说明】做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值若将此题“会产生增根”改为“无解”,即:当 a 为何值时,关于x 的方程223242axxxx无解?此时还要考虑转化后的整式方程(a1) x 10 本身无解的情况,解法如下:解:方程两边都乘以(x+2) (x-2 ) ,得 2(x2) ax3(x2)整理得( a1)x 10 若原方程无解,则有两种情形:(1)当 a10(即 a1)时,方程为0x 10,此方程无解,所以原方程无解。(2)如果方程的解恰好是原分式方程的增根,那么原分式方程无解原方程若有增根,增根为x2 或 2,把 x2 或 2 代入方程中,求出a 4 或 6综上所述, a1 或 a一或a6 时,原分式方程无解结论 :弄清分式方程的增根与无解的区别和联系,能帮助我们提高解分式方程的正确性,对判断方程解的情况有一定的指导意义与分式方程根有关的问题分类举例与分式方程的根有关的问题,在近年的中考试题中时有出现,现结合近年的中考题分类举例,介绍给读者,供学习、复习有关内容时参考。1. 已知分式方程有增根,求字母系数的值解答此类问题必须明确增根的意义:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 6 页精品资料欢迎下载(1)增根是使所给分式方程分母为零的未知数的值。(2)增根是将所给分式方程去分母后所得整式方程的根。利用( 1)可以确定出分式方程的增根,利用(2)可以求出分式方程有增根时的字母系数的值。例 1. (2000 年潜江市)使关于 x 的方程 axxax2224222产生增根的 a的值是()A. 2 B. 2 C. 2D. 与 a无关解: 去分母并整理,得:ax22401因为原方程的增根为x=2,把 x=2 代入,得 a2=4 所以a2故应选 C。例 2. (1997 年山东省)若解分式方程21112xxmxxxx产生增根,则 m 的值是()A. 1 或2 B. 1 或 2 C. 1 或 2 D. 1 或2 解: 去分母并整理,得:xxm22201又原方程的增根是x=0 或 x1,把 x=0 或 x=1 分别代入 式,得:m=2 或 m=1 故应选 C。例 3. (20XX 年重庆市)若关于 x 的方程axx1110有增根,则 a的值为 _。解: 原方程可化为:ax 1201又原方程的增根是x1,把 x1代入,得:a1故应填“1” 。例 4. (20XX 年鄂州市)关于 x 的方程xxkx323会产生增根,求 k 的值。解: 原方程可化为: xxk231又原方程的增根为x=3,把 x=3 代入,得:k=3 例 5. 当 k 为何值时,解关于x 的方程:1151112x xkx xkxx只有增根 x=1。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 6 页精品资料欢迎下载解: 原方程可化为:xkxkx151112把 x=1 代入,得 k=3 所以当 k=3 时,解已知方程只有增根x=1。评注:由以上几例可知,解答此类问题的基本思路是:(1)将所给方程化为整式方程;(2)由所给方程确定增根(使分母为零的未知数的值或题目给出);(3)将增根代入变形后的整式方程,求出字母系数的值。2. 已知分式方程根的情况,求字母系数的值或取值范围例 6. (20XX 年荆门市)当 k 的值为 _(填出一个值即可)时,方程xxkxxx122只有一个实数根。解: 原方程可化为:xxk2201要原方程只有一个实数根,有下面两种情况:(1)当方程有两个相等的实数根,且不为原方程的增根,所以由440k得 k=1。当 k=1 时,方程 的根为xx121,符合题意。( 2) 方 程有 两 个 不 相 等 的 实 数根 且 其 中 有 一 个 是 原 方 程 的 增 根, 所 以 由440k,得 k1。又原方程的增根为x=0 或 x=1,把 x=0 或 x=1 分别代入 得 k=0,或 k=3,均符合题意。综上所述:可填“ 1、0、3”中的任何一个即可。例 7. (20XX 年孝感市)当 m为何值时,关于x的方程21112xxmxxx无实根?解: 原方程可化为:xxm2201要原方程无实根,有下面两种情况:(1)方程 无实数根,由14 202m,得m74;(2)方程 的实数解均为原方程的增根时,原方程无实根,而原方程的增根为x=0 或x=1,把 x=0 或 x=1 分别代入 得 m=2。综上所述:当m74或当 m=2 时,所给方程无实数解。例 8. (20XX 年南昌市)已知关于 x 的方程11xmxm有实数根,求 m 的取值范围。解: 原方程化为: mxx2101要原方程有实数根,只要方程有实数根且至少有一个根不是原方程的增根即可。(1)当 m=0 时,有 x=1,显然 x=1 是原方程的增根,所以m=0 应舍去。(2)当m0时,由140m,得m14。又原方程的增根为x=0 或 x=1,当 x=0 时,方程 不成立;当 xm10,。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 6 页精品资料欢迎下载综上所述:当m14且m0时,所给方程有实数根。评注:由以上三例可知,由分式方程根的情况,求字母系数的值或取值范围的基本思路是:(1)将所给方程化为整式方程;(2)根据根的情况,由整式方程利用根的判别式求出字母系数的值或取值范围,注意排除使原方程有增根的字母系数的值。3. 已知分式方程无增根,求字母系数的取值范围例 9. 当 a取何值时,解关于x 的方程:xxxxxaxxx12212212无增根?解: 原方程可化为:23012xax又原方程的增根为x=2 或 x1,把 x=2 或 x1分别代入 得:a52或 a1又由a2240知, a可以取任何实数。所以,当a52且a1时,解所给方程无增根。评注:解答此类问题的基本思路是:(1)将已知方程化为整式方程;(2) 由所得整式方程求出有增根的字母系数的值和使整式方程有实数根的字母系数的取值范围;(3)从有实数根的范围里排除有增根的值,即得无增根的取值范围。4. 已知分式方程根的符号,求字母系数的取值范围例 9. 已知关于 x 的方程xax21的根大于 0,求 a的取值范围。解: 原方程可化为: 22xa所以xa12由题意,得:120a且122a所以a2且a2例 10. 已知关于 x 的方程xkx22的根小于 0,求 k 的取值范围。解: 原方程可化为:xkx24所以xk4由题意,得:k40所以k4评注:解答此类题的基本思路是:(1)求出已知方程的根;(2)由已知建立关于字母系数的不等式,求出字母系数的取值范围,注意排除使原方程有增根的字母系数的值。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 6 页精品资料欢迎下载说明:注意例 9 与例 10 的区别,例 9 有122a,而例 10 无k42这一不等式?请读者思考。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 6 页
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号