资源预览内容
第1页 / 共23页
第2页 / 共23页
第3页 / 共23页
第4页 / 共23页
第5页 / 共23页
第6页 / 共23页
第7页 / 共23页
第8页 / 共23页
第9页 / 共23页
第10页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
学习必备欢迎下载高等数学公式导数公式:基本积分表:三角函数的有理式积分:CaxxaxdxCshxchxdxCchxshxdxCaadxaCxctgxdxxCxdxtgxxCctgxxdxxdxCtgxxdxxdxxx)ln(lncsccscsecseccscsinseccos22222222CaxxadxCxaxaaxadxCaxaxaaxdxCaxarctgaxadxCctgxxxdxCtgxxxdxCxctgxdxCxtgxdxarcsinln21ln211csclncscseclnsecsinlncosln22222222CaxaxaxdxxaCaxxaaxxdxaxCaxxaaxxdxaxInnxdxxdxInnnnarcsin22ln22)ln(221cossin222222222222222222222020axxaaactgxxxtgxxxxctgxxtgxaxxln1)(logln)(csc)(cscsec)(seccsc)(sec)(22222211)(11)(11)(arccos11)(arcsinxarcctgxxarctgxxxxx精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 23 页学习必备欢迎下载222212211cos12sinududxxtguuuxuux,一些初等函数:两个重要极限:三角函数公式:诱导公式:函数角 A sin cos tg ctg -sin cos -tg -ctg 90 -cos sin ctg tg 90 +cos -sin -ctg -tg 180 -sin -cos -tg -ctg 180 +-sin -cos tg ctg 270 -cos -sin ctg tg 270 +-cos sin -ctg -tg 360 -sin cos -tg -ctg 360 +sin cos tg ctg 和差角公式:和差化积公式:2sin2sin2coscos2cos2cos2coscos2sin2cos2sinsin2cos2sin2sinsinctgctgctgctgctgtgtgtgtgtg1)(1)(sinsincoscos)cos(sincoscossin)sin(xxarthxxxarchxxxarshxeeeechxshxthxeechxeeshxxxxxxxxx11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦.590457182818284.2)11(lim1sinlim0exxxxxx精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 23 页学习必备欢迎下载倍角公式:半角公式:cos1sinsincos1cos1cos12cos1sinsincos1cos1cos122cos12cos2cos12sinctgtg正弦定理:RCcBbAa2sinsinsin余弦定理:Cabbaccos2222反三角函数性质:arcctgxarctgxxx2arccos2arcsin高阶导数公式莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2) 1()(nkknnnnnkkknknnuvvukknnnvunnvnuvuvuCuv中值定理与导数应用:拉格朗日中值定理。时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:xxFfaFbFafbfabfafbf)(F)()()()()()()()()(曲率:.1;0.)1(limMsMM:.,13202aKaKyydsdsKMMsKtgydxydss的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:23333133cos3cos43cossin4sin33sintgtgtgtg222222122212sincossin211cos22coscossin22sintgtgtgctgctgctg精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 23 页学习必备欢迎下载定积分的近似计算:bannnbannbanyyyyyyyynabxfyyyynabxfyyynabxf)(4)(2)(3)()(21)()()(1312420110110抛物线法:梯形法:矩形法:定积分应用相关公式:babadttfabdxxfabykrmmkFApFsFW)(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。与是向量在轴上的投影:点的距离:空间,cos)(.sin,cos,cosPrPr)(Pr,cosPr)()()(2222222212121221221221cbacccbbbaaacbacbarwvbacbbbaaakjibacbbbaaababababababababaajajaajuABABABjzzyyxxMMdzyxzyxzyxzyxzyxzyxzyxzzyyxxzzyyxxuu精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 23 页学习必备欢迎下载(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,22211;,1302),(,0)()()(1222222222222222222220000002220000000000czbyaxczbyaxqpzqypxczbyaxptzzntyymtxxpnmstpzznyymxxCBADCzByAxdczbyaxDCzByAxzyxMCBAnzzCyyBxxA多元函数微分法及应用zyzxyxyxyxyxFFyzFFxzzyxFdxdyFFyFFxdxydFFdxdyyxFdyyvdxxvdvdyyudxxuduyxvvyxuuxvvzxuuzxzyxvyxufztvvztuuzdtdztvtufzyyxfxyxfdzzdzzudyyudxxududyyzdxxzdz,隐函数,隐函数隐函数的求导公式:时,当:多元复合函数的求导法全微分的近似计算:全微分:0),()()(0),(),(),(),(),()(),(),(),(22精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 23 页学习必备欢迎下载),(),(1),(),(1),(),(1),(),(1),(),(0),(0),(yuGFJyvvyGFJyuxuGFJxvvxGFJxuGGFFvGuGvFuFvuGFJvuyxGvuyxFvuvu隐函数方程组:微分法在几何上的应用:),(),(),(30)(,()(,()(,(2),(),(),(1),(0),(,0),(0),(0)()()()()()(),()()()(000000000000000000000000000000000000000000000000000zyxFzzzyxFyyzyxFxxzzzyxFyyzyxFxxzyxFzyxFzyxFzyxFnzyxMzyxFGGFFGGFFGGFFTzyxGzyxFzztyytxxtMtzztyytxxzyxMtztytxzyxzyxzyxyxyxxzxzzyzy、过此点的法线方程:、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线方向导数与梯度:上的投影。在是单位向量。方向上的,为,其中:它与方向导数的关系是的梯度:在一点函数的转角。轴到方向为其中的方向导数为:沿任一方向在一点函数lyxflfljieeyxflfjyfixfyxfyxpyxfzlxyfxflflyxpyxfz),(gradsincos),(grad),(grad),(),(sincos),(),(多元函数的极值及其求法:不确定时值时,无极为极小值为极大值时,则:,令:设,00),( ,0),( ,00),(,),(,),(0),(),(22000020000000000BACBACyxAyxABACCyxfByxfAyxfyxfyxfyyxyxxyx精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 23 页学习必备欢迎下载重积分及其应用:DzDyDxzyxDyDxDDyDxDDDayxxdyxfaFayxydyxfFayxxdyxfFFFFFaaMzxoydyxxIydyxyIxdyxdyxyMMydyxdyxxMMxdxdyyzxzAyxfzrdrdrrfdxdyyxf23222232222322222D22)(),()(),()(),(,)0(), 0,0(),(,),(),(),(,),(),(1),()sin,cos(),(,其中:的引力:轴上质点平面)对平面薄片(位于轴对于轴对于平面薄片的转动惯量:平面薄片的重心:的面积曲面柱面坐标和球面坐标:dvyxIdvzxIdvzyIdvxMdvzMzdvyMydvxMxdrrrFddddrdrrFdxdydzzyxfddrdrdrdrrddvrzryrxzrrfzrFdzrdrdzrFdxdydzzyxfzzryrxzyxr)()()(1,1,1sin),(sin),(),(sinsincossinsincossin),sin,cos(),(,),(),(,sincos222222200),(0222,转动惯量:,其中重心:,球面坐标:其中:柱面坐标:曲线积分:)()()()()(),(),(),(,)()(),(22tytxdtttttfdsyxfttytxLLyxfL特殊情况:则:的参数方程为:上连续,在设长的曲线积分):第一类曲线积分(对弧精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 23 页学习必备欢迎下载。,通常设的全微分,其中:才是二元函数时,在:二元函数的全微分求积注意方向相反!减去对此奇点的积分,应。注意奇点,如,且内具有一阶连续偏导数在,、是一个单连通区域;、无关的条件:平面上曲线积分与路径的面积:时,得到,即:当格林公式:格林公式:的方向角。上积分起止点处切向量分别为和,其中系:两类曲线积分之间的关,则:的参数方程为设标的曲线积分):第二类曲线积分(对坐0),(),(),(),()0,0(),(),(21212,)()()coscos()()(),()()(),(),(),()()(00),(),(00yxdyyxQdxyxPyxuyxuQdyPdxyPxQyPxQGyxQyxPGydxxdydxdyADyPxQxQyPQdyPdxdxdyyPxQQdyPdxdxdyyPxQLdsQPQdyPdxdttttQtttPdyyxQdxyxPtytxLyxyxDLDLDLLLL曲面积分:dsRQPRdxdyQdzdxPdydzdzdxzxzyxQdzdxzyxQdydzzyzyxPdydzzyxPdxdyyxzyxRdxdyzyxRdxdyzyxRdzdxzyxQdydzzyxPdxdyyxzyxzyxzyxfdszyxfzxyzxyxyDDDDyx)coscoscos(),(,),(,),(),(),(,),(),(),(),(),(),(1),(,),(22系:两类曲面积分之间的关号。,取曲面的右侧时取正号;,取曲面的前侧时取正号;,取曲面的上侧时取正,其中:对坐标的曲面积分:对面积的曲面积分:高斯公式:dsAdvAdsRQPdsAdsnAzRyQxPdsRQPRdxdyQdzdxPdydzdvzRyQxPnndiv)coscoscos(.,0div,div)coscoscos()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:通量与散度:高斯公式的物理意义精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 23 页学习必备欢迎下载斯托克斯公式曲线积分与曲面积分的关系:dstARdzQdyPdxARQPzyxAyPxQxRzPzQyRRQPzyxRQPzyxdxdydzdxdydzRdzQdyPdxdxdyyPxQdzdxxRzPdydzzQyR的环流量:沿有向闭曲线向量场旋度:,关的条件:空间曲线积分与路径无上式左端又可写成:kjirotcoscoscos)()()(常数项级数:是发散的调和级数:等差数列:等比数列:nnnnqqqqqnn1312112)1(32111112级数审敛法:散。存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):根植审敛法(柯西判、正项级数的审敛法nnnnnnnnnnsuuusUUulim;3111lim2111lim1211。的绝对值其余项,那么级数收敛且其和如果交错级数满足莱布尼兹定理:的审敛法或交错级数1113214321,0lim)0,(nnnnnnnnurrusuuuuuuuuuuu绝对收敛与条件收敛:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 23 页学习必备欢迎下载时收敛时发散级数:收敛;级数:收敛;发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121pnpnnnuuuuuuuupnnnn幂级数:0010)3(lim)3(1111111221032RRRaaaaRRxRxRxRxaxaxaaxxxxxxxnnnnnnnn时,时,时,的系数,则是,其中求收敛半径的方法:设称为收敛半径。,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点对于级数时,发散时,收敛于函数展开成幂级数:nnnnnnnnnxnfxfxffxfxRxfxxnfRxxnxfxxxfxxxfxf!)0(!2)0()0()0()(00lim)(,)()!1()()(!)()(!2)()()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:一些函数展开成幂级数:)()!12()1(!5! 3sin)11(!)1()1(!2)1(1)1(121532xnxxxxxxxnnmmmxmmmxxnnnm欧拉公式:2sin2cossincosixixixixixeexeexxixe或三角级数:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 23 页学习必备欢迎下载。上的积分在任意两个不同项的乘积正交性:。,其中,0,cos,sin2cos,2sin,cos,sin,1cossin)sincos(2)sin()(001010nxnxxxxxxtAbAaaAanxbnxaatnAAtfnnnnnnnnnnnn傅立叶级数:是偶函数,余弦级数:是奇函数,正弦级数:(相减)(相加)其中,周期nxaaxfnnxdxxfabnxbxfnxdxxfbannxdxxfbnnxdxxfanxbnxaaxfnnnnnnnnnnncos2)(2,1 ,0cos)(20sin)(3,2,1nsin)(201241312116413121124614121851311)3,2,1(sin)(1)2, 1,0(cos)(12)sincos(2)(00022222222222222210周期为l 2 的周期函数的傅立叶级数:llnllnnnnndxlxnxflbndxlxnxflallxnblxnaaxf)3,2, 1(sin)(1)2,1 ,0(cos)(12)sincos(2)(10其中,周期微分方程的相关概念:即得齐次方程通解。,代替分离变量,积分后将,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。得:的形式,解法:为:一阶微分方程可以化可分离变量的微分方程或一阶微分方程:uxyuuduxdxudxduudxduxudxdyxyuxyyxyxfdxdyCxFyGdxxfdyygdxxfdyygdyyxQdxyxPyxfy)()(),(),()()()()()()(0),(),(),(一阶线性微分方程:)1 ,0()()(2)(0)(,0)()()(1)()()(nyxQyxPdxdyeCdxexQyxQCeyxQxQyxPdxdyndxxPdxxPdxxP,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 23 页学习必备欢迎下载全微分方程:通解。应该是该全微分方程的,其中:分方程,即:中左端是某函数的全微如果CyxuyxQyuyxPxudyyxQdxyxPyxdudyyxQdxyxP),(),(),(0),(),(),(0),(),(二阶微分方程:时为非齐次时为齐次,0)(0)()()()(22xfxfxfyxQdxdyxPdxyd二阶常系数齐次线性微分方程及其解法:2122,)(2,(*)0)(1,0(*)rryyyrrqprrqpqyypy式的两个根、求出的系数;式中的系数及常数项恰好是,其中、写出特征方程:求解步骤:为常数;,其中式的通解:出的不同情况,按下表写、根据(*),321rr的形式,21rr(*)式的通解两个不相等实根)04(2qpxrxrececy2121两个相等实根)04(2qpxrexccy1)(21一对共轭复根)04(2qp242221pqpirir,)sincos(21xcxceyx二阶常系数非齐次线性微分方程型为常数;型,为常数,sin)(cos)()()()(,)(xxPxxPexfxPexfqpxfqyypynlxmx求极限的各种方法1约去零因子求极限例 1:求极限11lim41xxx精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 23 页学习必备欢迎下载【说明】1x表明1与x无限接近,但1x,所以1x这一零因子可以约去。【解】6)1)(1(lim1)1)(1)(1(lim2121xxxxxxxx=4 2分子分母同除求极限例 2:求极限13lim323xxxx【说明】型且分子分母都以多项式给出的极限, 可通过分子分母同除来求。【解】3131lim13lim311323xxxxxxx【注】 (1) 一般分子分母同除x的最高次方;(2) nmbanmnmbxbxbaxaxannmmmmnnnnx0lim0110113分子 (母)有理化求极限例 3:求极限)13(lim22xxx【说明】分子或分母有理化求极限,是通过有理化化去无理式。【解】13)13)(13(lim)13(lim22222222xxxxxxxxxx0132lim22xxx例 4:求极限30sin1tan1limxxxx【解】xxxxxxxxxxsin1tan1sintanlimsin1tan1lim303041sintanlim21sintanlimsin1tan11lim30300xxxxxxxxxxx【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键4应用两个重要极限求极限精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 23 页学习必备欢迎下载两个重要极限是1sinlim0xxx和exnxxxnnxx10)1(lim)11 (lim)11 (lim, 第一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。例 5:求极限xxxx11lim【说明】第二个重要极限主要搞清楚凑的步骤:先凑出,再凑X1,最后凑指数部分。【解】2221212112111lim121lim11limexxxxxxxxxxx例 6:(1)xxx211lim;(2)已知82limxxaxax,求a。5用等价无穷小量代换求极限【说明】(1) 常见等价无穷小有:当0x时,)1ln(arctanarcsintansinxxxxxx1ex, abxaxxxb11,21cos12;(2)等价无穷小量代换 ,只能代换极限式中的 因式;(3) 此方法在各种求极限的方法中应作为首选。例 7:求极限0ln(1)lim1cosxxxx【解】002ln(1)limlim211cos2xxxxx xxx. 例 8:求极限xxxx30tansinlim【解】xxxx30tansinlim613lim31coslimsinlim222102030xxxxxxxxxx6用罗必塔法则求极限例 9:求极限220)sin1ln(2coslnlimxxxx【说明】或00型的极限 , 可通过罗必塔法则来求。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 23 页学习必备欢迎下载【解】220)sin1ln(2coslnlimxxxxxxxxxx2sin12sin2cos2sin2lim203sin112cos222sinlim20xxxxx【注】许多变动上显的积分表示的极限,常用罗必塔法则求解例 10:设函数 f(x)连续,且0)0(f,求极限.)()()(lim000xxxdttxfxdttftx【解】 由于000)()()(xxxutxduufduufdttxf,于是xxxxxxxduufxdtttfdttfxdttxfxdttftx0000000)()()(lim)()()(lim=xxxxxfduufxxfxxfdttf000)()()()()(lim=xxxxxfduufdttf000)()()(lim=)()()(lim000xfxduufxdttfxxx=.21)0()0()0(fff7用对数恒等式求)()(limxgxf极限例 11:极限xxx20)1ln(1lim【解】xxx20)1ln(1lim=)1ln(1ln20limxxxe=.2)1ln(2lim)1ln(1ln2lim00eeexxxxxx【注】对于 1 型未定式)()(limxgxf的极限,也可用公式)()(limxgxf)1 (=)()1)(lim(xgxfe因为)1)(1ln()(lim)(ln()(lim)()(limxfxgxfxgxgeexf)()1)(lim(xgxfe例 12:求极限3012coslim13xxxx. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 23 页学习必备欢迎下载【解 1】 原式2 cosln3301limxxxex202cosln3limxxx20l n 2c o sl n 3l i mxxx()01si n2c o sl i m2xxxx()011s i n1l i m22c o s6xxxx【解 2】 原式2 cosln3301limxxxex202cosln3limxxx20c o s1ln3limxxx(1)20c o s11l i m36xxx8利用 Taylor 公式求极限例 13求极限)0(,2lim20axaaxxx. 【解】)(ln2ln1222lnxaxaxeaaxx, )(ln2ln1222xaxaxax; ).(ln2222xaxaaxxaxxaxxaaxxxx22222020ln)(lnlim2lim. 例 14求极限01 1lim(cot)xxx x. 【解】001 11 sincoslim(cot)limsinxxxxxxx xxxx323230()1()3!2!limxxxxxxxx精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 23 页学习必备欢迎下载333011()()12!3!lim3xxxx. 9数列极限转化成函数极限求解例 15:极限21sinlimnnnn【说明】这是 1 形式的的数列极限,由于 数列极限不能使用罗必塔法则,若直接求有一定难度,若转化成函数极限,可通过7 提供的方法结合罗必塔法则求解。【解】考虑辅助极限611sin11011sin222limlim1sinlimeeexxyyyyxxxxxx所以,6121sinlimennnn10n 项和数列极限问题n 项和数列极限问题极限问题有两种处理方法(1)用定积分的定义把极限转化为定积分来计算; (2)利用两边夹法则求极限 . 例 16:极限22222212111limnnnnn【 说 明 】 用定 积分的 定义 把 极 限转 化为 定 积 分计 算,是把)(xf看 成 0,1 定积分 。10)(211limdxxfnnfnfnfnn【解】原式222112111111limnnnnnn1212ln2111102dxx例 17:极限nnnnn22212111lim精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 23 页学习必备欢迎下载【说明】 (1) 该题遇上一题类似,但是不能凑成nnfnfnfnn211lim的形式,因而用两边夹法则求解;(2) 两边夹法则需要放大不等式,常用的方法是都换成最大的或最小的。【解】nnnnn22212111lim因为11211122222nnnnnnnnn又nnnn2lim11lim2nnn所以nnnnn22212111lim12单调有界数列的极限问题例 18:设数列nx满足110,sin(1,2,)nnxxxn()证明 limnnx 存在,并求该极限;()计算211limnxnnnxx. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在 . 【详解】()因为10x,则210sin1xx. 可推得10sin1,1,2,nnxxn,则数列nx有界. 于是1sin1nnnnxxxx, (因当0sinxxx时,) , 则有1nnxx, 可见数列nx单调减少,故由单调减少有下界数列必有极限知极限limnnx 存在. 设 limnnxl ,在1sinnnxx两边令n,得sinll ,解得0l,即 lim0nnx. ()因22111sinlimlimnnxxnnnnnnxxxx,由()知该极限为 1 型,61sin01sin110032221limlimsin1limeeexxxxxxxxxxxx ( 使用了罗必塔法则 ) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 23 页学习必备欢迎下载故2211116sinlimlimennxxnnnnnnxxxx. 求不定积分的方法及技巧小汇总 1.利用基本公式。(这就不多说了 )2.第一类换元法。(凑微分)设 f()具有原函数 F()。则CxFxdxfdxxxf)()()()( )(其中)(x可微。用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例 2:例 1:dxxxxx) 1(ln)1ln(【解】)1(1111)ln)1(ln(xxxxxxCxxxxdxxdxxxxx2)ln)1(ln(21)ln)1(ln()ln)1(ln() 1(ln)1ln(例2 :dxxxx2)ln(ln1【解】xxxln1)ln(精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 19 页,共 23 页学习必备欢迎下载Cxxxxxdxdxxxxln1)ln(ln)1(ln1223.第二类换元法:设)(tx是单调、可导的函数, 并且)( )(.0)( ttft又设具有原函数, 则有换元公式dtttfdxf)( )(x)(第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会用。主要有以下几种:achtxtaxtaxaxashtxtaxtaxaxtaxtaxxa;:;:;:cscsec)3(cottan)2(cossin)1(222222也奏效。,有时倒代换当被积函数含有:txcbxaxxtdcxbaxdcxbaxtbaxbaxmnnnn1)6()5()4(24.分部积分法 . 公式:dd分部积分法采用迂回的技巧,规避难点,挑容易积分的部分先做,最终完成不定积分。具体选取、时,通常基于以下两点考虑:(1)降低多项式部分的系数(2)简化被积函数的类型举两个例子吧 !例 3:dxxxx231arccos【解】观察被积函数,选取变换xtarccos ,则tdttdtttttdxxxx3323cos)sin(sincos1arccos精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 20 页,共 23 页学习必备欢迎下载CxxxxxCttttttdttttdtttttttttdtdttarccos1)2(313291cos91cos32sinsin31cos)1sin31(sinsin31)sinsin31(sinsin31)sinsin31(sin) 1(sin22333233332例 4:xdx2arcsin【解】dxxxxxxxdx22211arcsin2sinarcsinCxxxxxdxxxxxxxxxdxx2arcsin12arcsin121arcsin12arcsin1arcsin2arcsin22222上面的例 3,降低了多项式系数;例4,简化了被积函数的类型。有时,分部积分会产生循环,最终也可求得不定积分。在dd中,、的选取有下面简单的规律:选取的函数不能改变。,会出现循环,注意,)3(sin,cos)3()(arcsin,arctan,ln)2(cos,sin,)()1 (xxexPxxxaxaxexPaxmaxm将以上规律化成一个图就是:但是,当xxarcsinln,时,是无法求解的。对于( 3)情况,有两个通用公式:CbxbbxabaedxbxeICbxbbxabaedxbxeIaxaxaxax)sincos(cos)cossin(sin222221(lnx arcsinx)Pm(x) (ax sinx) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 21 页,共 23 页学习必备欢迎下载(分部积分法用处多多 在本册杂志的涉及lnx 的不定积分中,常可以看到分部积分)5.几种特殊类型函数的积分。(1)有理函数的积分有理函数)()(xQxP先化为多项式和真分式)()(*xQxP之和,再把)()(*xQxP分解为若干个部分分式之和。 (对各部分分式的处理可能会比较复杂。出现nnxadxI)(22时,记得用递推公式:121222) 1(232)(1(2nnnInanaxnaxI)例 5:dxxxxxx223246)1(24【解】223222346223246)1(24)1()1(24xxxxxxxxxxxx22322)1(241xxxxx2222422242223222) 1(12) 1(24) 1(24) 1ln(211xdxxxxxdxxxxdxxxxCxdxxxCxxCddd)1(1111)1(11()1()1()1(122222222222故不定积分求得。(2)三角函数有理式的积分万能公式:2tan12tan1cos2tan12tan2sin222xxxxxx化为有理函数可用变换2tan)cos,(sin)cos,(sinxtdxxxQxxP的积分,但由于计算较烦,应尽量避免。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 22 页,共 23 页学习必备欢迎下载对 于 只 含 有tanx ( 或cotx ) 的 分 式 , 必 化 成xxxxsincoscossin或。 再 用 待 定 系 数xbxaxbxaBxbxaAsincos)sincos()sincos(来做。 (注:没举例题并不代表不重要)(3)简单无理函数的积分一般用第二类换元法中的那些变换形式。像一些简单的,应灵活运用。如:同时出现xx1和时,可令tx2tan;同时出现xx1和时 , 可 令tx2s in; 同 时 出 现xxarcsin12和时 , 可令 x=sint ;同 时 出 现xxarccos12和时,可令 x=cost 等等。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 23 页,共 23 页
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号