资源预览内容
第1页 / 共33页
第2页 / 共33页
第3页 / 共33页
第4页 / 共33页
第5页 / 共33页
第6页 / 共33页
第7页 / 共33页
第8页 / 共33页
第9页 / 共33页
第10页 / 共33页
亲,该文档总共33页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
同济大学第五版高等数学同济大学第五版高等数学(下下)课课件件D112数项级数及审敛法数项级数及审敛法一、正项级数及其审敛法一、正项级数及其审敛法若定理定理 1. 正项级数收敛部分和序列有界 .若收敛 , 部分和数列有界, 故从而又已知故有界.则称为正项级数 .单调递增, 收敛 , 也收敛.证证: “ ”“ ”机动 目录 上页 下页 返回 结束 定理定理3. (比较审敛法的极限形式)则有两个级数同时收敛或发散 ;(2) 当 l = 0 (3) 当 l = 证证: 据极限定义,设两正项级数满足(1) 当 0 l 时,机动 目录 上页 下页 返回 结束 由定理 2 可知同时收敛或同时发散 ;(3) 当l = 时,即由定理2可知, 若发散 , (1) 当0 l 时,(2) 当l = 0时,由定理2 知收敛 , 若机动 目录 上页 下页 返回 结束 是两个正项级数正项级数, (1) 当 时, 两个级数同时收敛或发散 ;特别取可得如下结论 :对正项级数(2) 当 且 收敛时,(3) 当 且 发散时, 也收敛 ;也发散 .机动 目录 上页 下页 返回 结束 的敛散性. 例例3. 判别级数的敛散性 .解解: 根据比较审敛法的极限形式知例例4. 判别级数解解:根据比较审敛法的极限形式知机动 目录 上页 下页 返回 结束 定理定理4 . 比值审敛法 ( Dalembert 判别法)设 为正项级数, 且则(1) 当(2) 当证证: (1)收敛 ,时, 级数收敛 ;或时, 级数发散 .由比较审敛法可知机动 目录 上页 下页 返回 结束 因此所以级数发散.时(2) 当说明说明: 当时,级数可能收敛也可能发散.例如例如, , p 级数但级数收敛 ;级数发散 .从而机动 目录 上页 下页 返回 结束 例例5. 讨论级数的敛散性 .解解: 根据定理4可知:级数收敛 ;级数发散 ;机动 目录 上页 下页 返回 结束 对任意给定的正数 定理定理5. 根值审敛法 ( Cauchy判别法) 设 为正项级则证明提示证明提示: 即分别利用上述不等式的左,右部分, 可推出结论正确.数, 且机动 目录 上页 下页 返回 结束 时 , 级数可能收敛也可能发散 .例如 , p 级数 说明说明 :但级数收敛 ;级数发散 .机动 目录 上页 下页 返回 结束 例例6. 证明级数收敛于S ,似代替和 S 时所产生的误差 . 解解: : 由定理5可知该级数收敛 .令则所求误差为并估计以部分和 Sn 近 机动 目录 上页 下页 返回 结束 二二 、交错级数及其审敛法、交错级数及其审敛法 则各项符号正负相间的级数称为交错级数交错级数 .定理定理6 . ( Leibnitz 判别法 ) 若交错级数满足条件:则级数收敛 , 且其和 其余项满足机动 目录 上页 下页 返回 结束 证证: 是单调递增有界数列,又故级数收敛于S, 且故机动 目录 上页 下页 返回 结束 收敛收敛用Leibnitz 判别法判别法判别下列级数的敛散性:收敛上述级数各项取绝对值后所成的级数是否收敛 ?发散收敛收敛机动 目录 上页 下页 返回 结束 三、绝对收敛与条件收敛三、绝对收敛与条件收敛 定义定义: 对任意项级数若若原级数收敛, 但取绝对值以后的级数发散, 则称原级收敛 ,数为条件收敛 .均为绝对收敛.例如例如 :绝对收敛 ;则称原级数条件收敛 .机动 目录 上页 下页 返回 结束 定理定理7. 绝对收敛的级数一定收敛 .证证: 设根据比较审敛法显然收敛,收敛也收敛且收敛 , 令机动 目录 上页 下页 返回 结束 例例7. 证明下列级数绝对收敛 :证证: (1)而收敛 ,收敛因此绝对收敛 .机动 目录 上页 下页 返回 结束 (2) 令因此收敛,绝对收敛.机动 目录 上页 下页 返回 结束 其和分别为 绝对收敛级数与条件收敛级数具有完全不同的性质.*定理定理8. 绝对收敛级数不因改变项的位置而改变其和. ( P203 定理9 )说明说明: 证明参考 P203P206, 这里从略.*定理定理9. ( 绝对收敛级数的乘法 )则对所有乘积 按任意顺序排列得到的级数也绝对收敛,设级数与都绝对收敛,其和为但需注意条件收敛级数不具有这两条性质. (P205 定理10) 机动 目录 上页 下页 返回 结束 内容小结内容小结1. 利用部分和数列的极限判别级数的敛散性2. 利用正项级数审敛法必要条件不满足发 散满足比值审敛法根值审敛法收 敛发 散不定 比较审敛法用它法判别积分判别法部分和极限机动 目录 上页 下页 返回 结束 3. 任意项级数审敛法为收敛级数Leibniz判别法:则交错级数收敛概念:绝对收敛条件收敛机动 目录 上页 下页 返回 结束 思考与练习思考与练习设正项级数收敛, 能否推出收敛 ?提示提示:由比较判敛法可知收敛 .注意注意: 反之不成立. 例如,收敛 ,发散 .机动 目录 上页 下页 返回 结束 作业作业 P206 1 (1), (3), (5) ; 2 (2), (3), (4) ; 3 (1), (2) ; 4 (1), (3), (5), (6) ; 5 (2), (3), (5)第三节 目录 上页 下页 返回 结束 备用题备用题1. 判别级数的敛散性:解解: (1)发散 , 故原级数发散 .不是 p级数(2)发散 , 故原级数发散 .机动 目录 上页 下页 返回 结束 2. 则级数(A) 发散 ; (B) 绝对收敛;(C) 条件收敛 ; (D) 收敛性根据条件不能确定.分析分析: (B) 错 ;又C机动 目录 上页 下页 返回 结束
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号