资源预览内容
第1页 / 共119页
第2页 / 共119页
第3页 / 共119页
第4页 / 共119页
第5页 / 共119页
第6页 / 共119页
第7页 / 共119页
第8页 / 共119页
第9页 / 共119页
第10页 / 共119页
亲,该文档总共119页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
九章相关与回归分析Stillwatersrundeep.流静水深流静水深,人静心深人静心深Wherethereislife,thereishope。有生命必有希望。有生命必有希望不要过于教条地对待研究的结果,不要过于教条地对待研究的结果,尤其当数据的质量受到怀疑时。尤其当数据的质量受到怀疑时。 Damodar N.Gujarati 1 变量间关系的度量变量间关系的度量 2 一元线性回归一元线性回归3 利用回归方程进行估计利用回归方程进行估计学习目标1. 相关关系的分析方法相关关系的分析方法2.一元线性回归的基本原理和参数的最小一元线性回归的基本原理和参数的最小二乘估计二乘估计3.回归直线的拟合优度回归直线的拟合优度4.回归方程的显著性检验回归方程的显著性检验5.利用回归方程进行估计利用回归方程进行估计第一节 变量间关系的度量1 变量间的关系变量间的关系2 相关关系的描述与测度相关关系的描述与测度3 相关系数的显著性检验相关系数的显著性检验变量间的关系x xy yx xy y函数关系1.是一一对应的确定确定关系2.设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完全依赖于 x ,当变量 x 取某个数值时, y 依确定的关系取相应的值,则称 y 是 x 的函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量3.各观测点落在一条线上 x xy yx xy y函数关系(几个例子)n n某种商品的销售额y与销售量x之间的关系可表示为 y = px (p 为单价)n n圆的面积S与半径R之间的关系可表示为S=2 Rn n企业的原材料消耗额y与产量x1 、单位产量消耗x2 、原材料价格x3之间的关系可表示为 y = x1 x2 x3 相关关系(correlation)1.变量之间存在的不不确确定定的数量关系。2.一个变量的取值不能由另一个变量唯一确定3.当变量 x 取某个值时,变量 y 的取值可能有几个4.各观测点分布在直线周围 x xy y相关关系(几个例子)n n父亲身高y与子女身高x之间的关系n n收入水平y与受教育程度x之间的关系n n粮食单位面积产量y与施肥量x1 、降雨量x2 、温度x3之间的关系n n商品的消费量y与居民收入x之间的关系n n商品销售额y与广告费支出x之间的关系相关关系(类型)相关关系的描述与测度(散点图)相关分析及其假定1.相关分析要解决的问题变量之间是否存在关系?如果存在关系,它们之间是什么样的关系?变量之间的关系强度如何?样本所反映的变量之间的关系能否代表总体变量之间的关系?2.为解决这些问题,在进行相关分析时,对总体有以下两个主要假定两个变量之间是线性关系两个变量之间是线性关系两个变量都是随机变量两个变量都是随机变量散点图(scatter diagram)不相关不相关不相关不相关不相关不相关 负线性相关负线性相关负线性相关负线性相关负线性相关负线性相关正线性相关正线性相关正线性相关正线性相关正线性相关正线性相关非线性相关非线性相关非线性相关非线性相关非线性相关非线性相关完全负线性相关完全负线性相关完全负线性相关完全负线性相关完全负线性相关完全负线性相关完全正线性相关完全正线性相关完全正线性相关完全正线性相关完全正线性相关完全正线性相关散点图(例题分析)【例例】一家大型商业银行在多个地区设有分行,其业务主要是进行基础设施建设、国家重点项目建设、固定资产投资等项目的贷款。近年来,该银行的贷款额平稳增长,但不良贷款额也有较大比例的增长,这给银行业务的发展带来较大压力。为弄清不良贷款形成的原因,管理者希望利用银行业务的有关数据进行定量分析,以便找出控制不良贷款的办法。下面是该银行所属的25家分行2002年的有关业务数据 散点图(例题分析)散点图(不良贷款对其他变量的散点图)散点图(5个变量的散点图矩阵)不良贷款贷款余额累计应收贷款贷款项目个数固定自产投资相关关系的描述与测度(相关系数)相关系数(correlation coefficient)1.度量变量之间线性关系强度的一个统计量2.对两个变量之间线性相关强度的度量称为简单相关系数3.若相关系数是根据总体全部数据计算的,称为总体相关系数,记为 4.若相关系数是根据样本数据计算的,则称为样本相关系数,简称为相关系数,记为 r也称为线性相关系数(linear correlation coefficient) 或称为Pearson相关系数 (Pearsons correlation coefficient) 相关系数 (计算公式) 样本相关系数的计算公式或化简为协方差刻画了两个随机变量相对于它们均值的同时偏差,反映了两个变量共同变化的程度。将协方差标准化以消除测量单位的影响。这里是除以两个标准差sx,sy的乘积。协方差相关系数的性质性质性质1:r 的取值范围是 -1,1 |r|=1,为完全相关r =1,为完全正相关r =-1,为完全负正相关 r = 0,不存在线性线性相关关系 -1r0,为负相关0r1,为正相关|r|越趋于1表示关系越强;|r|越趋于0表示关系越弱相关系数的性质(取值及其意义的图解)-1.0+1.00-0.5+0.5完全负相关完全负相关完全负相关完全负相关无线性相关无线性相关无线性相关无线性相关完全正相关完全正相关完全正相关完全正相关负相关程度增加负相关程度增加负相关程度增加负相关程度增加r正相关程度增加正相关程度增加正相关程度增加正相关程度增加相关系数的性质性质性质2:r具有对称性。即x与y之间的相关系数和y与x之间 的相关系数相等,即rxy= ryx性质性质3:r数值大小与x和y原点及尺度无关,即改变x和y的 数据原点及计量尺度,并不改变r数值大小性质性质4:仅仅是x与y之间线性关系的一个度量,它不能用 于描述非线性关系。这意味着, r=0只表示两个变 量之间不存在线性相关关系,并不说明变量之间 没有任何关系性质性质5:r虽然是两个变量之间线性关系的一个度量,却不 一定意味着x与y一定有因果关系相关系数的经验解释1. |r|0.8时,可视为两个变量之间高度相关2.0.5|r|0.8时,可视为中度相关3.0.3|r|0.5时,视为低度相关4.|r| t t,拒绝,拒绝H H0 0 若若 t t =7.5344t t(25-2)=2.069(25-2)=2.069,拒拒绝绝H H0 0,不不良良贷贷款与贷款余额之间存在着显著的正线性相关关系款与贷款余额之间存在着显著的正线性相关关系 相关系数的显著性检验(例题分析)各相关系数检验的统计量各相关系数检验的统计量相关系数的显著性检验(需要注意的问题)1.即使统计检验表明相关系数在统计上是显著的,并不一定意味着两个变量之间就存在重要的相关性2.因为在大样本的情况下,几乎总是导致相关系数显著比如,r=0.1,在大样本的情况下,也可能使得r通过检验,但实际上,一个变量取值的差异能由另一个变量的取值来解释的比例只有10%,这实际上很难说明两个变量之间就有实际意义上的显著关系一元线性回归1 一元线性回归模型一元线性回归模型2 参数的最小二乘估计参数的最小二乘估计3 回归直线的拟合优度回归直线的拟合优度4 显著性检验显著性检验什么是回归分析?(regression)1.从一组样本数据出发,确定变量之间的数学关系式2.对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显著,哪些不显著3.利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度趋向中间高度的回归回归这个术语是由英国著名统计学家Francis Galton在19世纪末期研究孩子及其父母的身高时提出来的。Galton发现身材高的父母,他们的孩子身材也高。但这些孩子平均起来并不像他们的父母那样高。对于比较矮的父母情形也类似:他们的孩子比较矮,但这些孩子的平均身高要比他们的父母的平均身高高。 Galton把这种孩子的身高向平均值靠近的趋势称为一种回归效应,而他发展的研究两个数值变量的方法称为回归分析回归分析与相关分析的区别1.相关分析中,变量 x 变量 y 处于平等的地位;回归分析中,变量 y 称为因变量,处在被解释的地位,x 称为自变量,用于预测因变量的变化2.相关分析中所涉及的变量 x 和 y 都是随机变量;回归分析中,因变量 y 是随机变量,自变量 x 是非随机的确定变量3.相关分析主要是描述两个变量之间线性关系的密切程度;回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归方程进行预测和控制 回归模型的类型一元线性回归模型一元线性回归1.涉及一个自变量的回归2.因变量y与自变量x之间为线性关系被 预 测 或 被 解 释 的 变 量 称 为 因 变 量(dependent variable),用y表示用来预测或用来解释因变量的一个或多个变量称为自变量(independent variable),用x表示 3.因变量与自变量之间的关系用一个线性方程来表示回归模型(regression model)1.回答“变量之间是什么样的关系?”2.方程中运用1 个数值型因变量(响应变量)被预测的变量1 个或多个数值型或分类型自变量 (解释变量)用于预测的变量3. 主要用于预测和估计一元线性回归模型1.描述因变量 y 如何依赖于自变量 x 和误差项 的方程称为回归模型回归模型2.一元线性回归模型可表示为 y = 0 0 + + 1 1 x + + e ey 是 x 的线性函数(部分)加上误差项误差项线性部分( 0 0 + + 1 1 x )反映了由于 x 的变化而引起的 y 的变化误差项 是随机变量反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响是不能由 x 和 y 之间的线性关系所解释的变异性0 和 1 称为模型的参数回归模型中为什么包含误差项理由理由1:理论的含糊性。:理论的含糊性。理由理由2:数据的欠缺。:数据的欠缺。理由理由3:核心变量与周边变量。:核心变量与周边变量。理由理由4:人类行为的内在随机性。:人类行为的内在随机性。理由理由5:糟糕的替代变量。:糟糕的替代变量。理由理由6:节省原则。:节省原则。理由理由7:错误的函数形式。:错误的函数形式。误差项是未包括在模型中而又影响着y的全部变量的替代物,但为什么不把这些变量引进到模型中来?换句话说,为什么不构造一个含有尽可能多个变量的复回归模型?古扎拉蒂在计量经济学一书中列出了7点理由回归模型中为什么包含误差项理由理由1:理论的含糊性理论的含糊性即使有决定y的行为的理论,而且常常是不完全的,影响y的变量不是无所知就是知而不确,因此不妨设作为模型所排除或忽略的全部变量的替代变量理由理由2:数据的欠缺数据的欠缺即使我们明知被忽略变量中的一些变量,并因而考虑用一个复回归而不是一个简单回归,我们却不一定能得到关于这些变量的数量信息回归模型中为什么包含误差项理由理由3:核心变量与周边变量。核心变量与周边变量。影响y的全部或其中的一些变量,合起来的影响如此之小,充其量是一种非系统的或随机的影响。从实际考虑以及从成本上计算,把它们一一引入模型是划不来的。所以人们希望把它们的联合效应当作一个随机变量来看待。理由理由4:人类行为的内在随机性。人类行为的内在随机性。即使我们成功地把所有有关的变量都引进到模型中来,在个别的y中仍不免有一些“内在”的随机性,这是无论我们花多少力气都解释不了的。随机项也许能很好地反映这种随机性回归模型中为什么包含误差项理由理由5:糟糕的替代变量:糟糕的替代变量虽然经典回归模型假定变量y和x能准确地观测,但实际上数据会受到测量误差的扰乱。由于这些变量不可直接观测,故实际上我们用替代变量。这时误差项又可以用来代表测量误差理由理由6:节省原则:节省原则我们想保持一个尽可能简单的回归模型。如果我们能用两个或三个变量就“基本上”解释了y的行为,并且如果我们的理论完善或扎实的程度还没有达到足以提出可包含进来的其他变量,那么为什么要引进更多的变量呢?让去代表所有的其他变量好了。当然,我们不应该只为了保持回归模型简单而排除有关的和重要的变量回归模型中为什么包含误差项理由理由7:错误的函数形式错误的函数形式即使我们有了解释一种现象的在理论上正确的变量,并且能获得这些变量的数据,我们却常常不知道回归子(因变量)和回归元(自变量)之间的函数形式是什么形式。在双变量模型中,人们往往能从散点图来判断关系式的函数形式,而在多变量回归模型中,由于无法从图形上想像一个多维的散点图,要决定适当的函数形式就不容易一元线性回归模型(基本假定) 1.因变量y与自变量x之间具有线性关系2.在重复抽样中,自变量x的取值是固定的,即假定x是非随机的3.误差项是一个期望值为0的随机变量,即E()=0。对于一个给定的 x 值,y 的期望值为E ( y ) = 0+ 1 x4.对于所有的 x 值,的方差2 都相同5.误差项是一个服从正态分布的随机变量,且相互独立。即N(0 ,2 )误差项是一个服从正态分布的随机变量,且相互独立。即N(0 ,2 )独立性意味着对于一个特定的 x 值,它所对应的与其他 x 值所对应的不相关对于一个特定的 x 值,它所对应的 y 值与其他 x 所对应的 y 值也不相关回归方程 (regression equation)1.描述 y 的平均值或期望值如何依赖于 x 的方程称为回归方程回归方程2.一元线性回归方程的形式如下 E( y ) = 0+ 1 x方程的图示是一条直线,也称为直线回归方程方程的图示是一条直线,也称为直线回归方程 0 0是是回回归归直直线线在在 y y 轴轴上上的的截截距距,是是当当 x x=0 =0 时时 y y 的的期期望值望值 1 1是是直直线线的的斜斜率率,称称为为回回归归系系数数,表表示示当当 x x 每每变变动动一个单位时,一个单位时,y y 的平均变动值的平均变动值估计的回归方程(estimated regression equation)3.一元线性回归中估计的回归方程为一元线性回归中估计的回归方程为2.用用样样本本统统计计量量 和和 代代替替回回归归方方程程中中的的未未知知参参数数 和和 ,就得到了,就得到了估计的回归方程估计的回归方程估计的回归方程估计的回归方程1.总总总总体体体体回回回回归归归归参参参参数数数数 和和和和 是是是是未未未未知知知知的的的的,必必必必须须须须利利利利用用用用样样样样本本本本数数数数据去估计据去估计据去估计据去估计其其中中: 是是估估计计的的回回归归直直线线在在 y y 轴轴上上的的截截距距, 是是直直线线的的斜斜率率,它它表表示示对对于于一一个个给给定定的的 x x 的的值值, 是是 y y 的的估估计计值,也表示值,也表示 x x 每变动一个单位时,每变动一个单位时, y y 的平均变动值的平均变动值 参数的最小二乘估计最小二乘估计(method of least squares )1.德国科学家Karl Gauss(17771855)提出用最小化图中垂直方向的误差平方和来估计参数 2.使因变量的观察值与估计值之间的误差平方和达到最小来求得 和 的方法。即3.用最小二乘法拟合的直线来代表x与y之间的关系与实际数据的误差比其他任何直线都小Karl Gauss的最小化图的最小化图x xy y( (x xn n , , y yn n) )( (x x1 1 , , y y1 1) )( (x x2 2 , , y y2 2) )( (x xi i , , y yi i) )e ei i = = y yi i- -y yi i最小二乘法 ( 和 的计算公式) 根据最小二乘法,可得求解 和 的公式如下要要求求推推导导比较估计方程的求法(例题分析)【例例】求不良贷款对贷款余额的回归方程回归方程为:回归方程为:y = -0.8295 + 0.037895 x回回归归系系数数 =0.037895 =0.037895 表表示示,贷贷款款余余额额每每增增加加1 1亿元,不良贷款平均增加亿元,不良贷款平均增加0.0378950.037895亿元亿元 估计方程的求法(例题分析)不良贷款对贷款余额回归方程的图示回归直线的拟合优度变差1.因变量 y 的取值是不同的,y 取值的这种波动称为变差。变差来源于两个方面由于自变量 x 的取值不同造成的除 x 以外的其他因素(如x对y的非线性影响、测量误差等)的影响2.对一个具体的观测值来说,变差的大小可以通过该实际观测值与其均值之差 来表示3.n次观察值的总变差误差的分解(图示) x xy yy y误差平方和的分解 (三个平方和的关系) SST = SSR + SSE总平方和总平方和总平方和总平方和( (SSTSST) )回归平方和回归平方和回归平方和回归平方和(SSR)(SSR)残差平方和残差平方和残差平方和残差平方和(SSE)(SSE)误差平方和的分解 (三个平方和的意义)1.总平方和总平方和(SSTtotal sum of squares)反映因变量的 n 个观察值与其均值的总误差2.回归平方和回归平方和(SSRsum of squares of regression)反映自变量 x 的变化对因变量 y 取值变化的影响,或者说,是由于 x 与 y 之间的线性关系引起的 y 的取值变化,也称为可解释的平方和3.残差平方和残差平方和(SSEsum of squares of error)反映除 x 以外的其他因素对 y 取值的影响,也称为不可解释的平方和或剩余平方和判定系数R2 (coefficient of determination)1.回归平方和回归平方和占总误差平方和的比例占总误差平方和的比例2.反映回归直线的拟合程度3.取值范围在 0 , 1 之间4. R2 1,说明回归方程拟合的越好;R20,说明回归方程拟合的越差5.判定系数等于相关系数的平方,即R2r2判定系数 (例题分析)【例例】计算不良贷款对贷款余额回归的判定系数,并解释其意义 判判定定系系数数的的实实际际意意义义是是:在不良贷款取值的变差中,有71.16%可以由不良贷款与贷款余额之间的线性关系来解释,或者说,在不良贷款取值的变动中,有71.16%是由贷款余额所决定的。也就是说,不良贷款取值的差异有2/3以上是由贷款余额决定的。可见不良贷款与贷款余额之间有较强的线性关系 估计标准误差(standard error of estimate)1.实际观察值与回归估计值误差平方和的均方根2.反映实际观察值在回归直线周围的分散状况3.对误差项的标准差的估计,是在排除了x对y的线性影响后,y随机波动大小的一个估计量4.反映用估计的回归方程预测y时预测误差的大小 5.计算公式为注:例题的计算结果为注:例题的计算结果为1.97991.9799估计标准误差的自由度1.估计标准误差的是残差平方和SSE除以它的自由度后的平方根2.残差平方和SSE的自由度之所以是n-2,原因是在计算SSE时,必须先求出 和 ,这两个估计值就是附加给SSE的两个约束条件,因此在计算SSE时,只有n-2个独立的观测值,而不是n个3.一般而言,在有k个自变量的多元回归中,自由度则为n-k4.一般的规律是:自由度自由度=n-待估参数的个数待估参数的个数显著性检验线性关系的检验1.检验自变量与因变量之间的线性关系是否显著2.将回归均方(MSR)同残差均方(MSE)加以比较,应用F检验来分析二者之间的差别是否显著回归均方:回归平方和SSR除以相应的自由度(自变量的个数k) 残差均方:残差平方和SSE除以相应的自由度(n-k-1)线性关系的检验 (检验的步骤) 1.提出假设H0:1=0 线性关系不显著2. 计算检验统计量F3.确定显著性水平,并根据分子自由度1和分母自由度n-2找出临界值F 4.作出决策:若FF ,拒绝H0;若FF ,拒绝H0,线性关系显著线性关系的检验 (方差分析表) Excel 输出的方差分析表输出的方差分析表回归系数的检验3.在一元线性回归中,等价于线性关系的显著性检验4.采用t检验1.检验 x 与 y 之间是否具有线性关系,或者说,检验自变量 x 对因变量 y 的影响是否显著2.理论基础是回归系数 的抽样分布回归系数的检验(样本统计量 的分布)1. 1.1. 是是是根根根据据据最最最小小小二二二乘乘乘法法法求求求出出出的的的样样样本本本统统统计计计量量量,它它它有有有自自自己己己的分布的分布的分布2. 2.2. 的的的分布具有如下性质分布具有如下性质分布具有如下性质 分布形式:正态分布分布形式:正态分布分布形式:正态分布 数学期望:数学期望:数学期望: 标准差:标准差:标准差: 由由由于于于 未未未知知知,需需需用用用其其其估估估计计计量量量s s se ee来来来代代代替替替得得得到到到 的的的估估估计计计的的的标准差标准差标准差回归系数的检验 (检验步骤) 1.提出假设H0: 1 = 0 (没有线性关系) H1: 1 0 (有线性关系) 2.计算检验的统计量3. 确定显著性水平确定显著性水平 ,并进行决策,并进行决策 t t t t,拒绝,拒绝H H0 0; t t =7.533515t t=2.201=2.201,拒拒绝绝H H0 0,表表明明不不良良贷贷款款与贷款余额之间有显著的线性关系与贷款余额之间有显著的线性关系回归系数的检验 (例题分析)P 值的应用值的应用P P=0.000000=0.000000 =0.05=0.05,拒绝原假设,拒绝原假设,不良贷款与贷不良贷款与贷款余额之间有显著的线性关系款余额之间有显著的线性关系回归分析结果的评价l建立的模型是否合适?或者说,这个拟合的模型有多“好”?要回答这些问题,可以从以下几个方面入手1.所估计的回归系数 的符号是否与理论或事先预期相一致在不良贷款与贷款余额的回归中,可以预期贷款余额越多不良贷款也可能会越多,也就是说,回归系数的值应该是正 的 , 在 上 面 建 立 的 回 归 方 程 中 , 我 们 得 到 的 回 归 系 数 为正值2.如果理论上认为x与y之间的关系不仅是正的,而且是统计上显著的,那么所建立的回归方程也应该如此在不良贷款与贷款余额的回归中,二者之间为正的线性关系,而且,对回归系数的t检验结果表明二者之间的线性关系是统计上显著的3.回归模型在多大程度上解释了因变量y取值的差异?可以用判定系数R2来回答这一问题在不良贷款与贷款余额的回归中,得到的R2=71.16%,解释了不良贷款变差的2/3以上,说明拟合的效果还算不错4.考察关于误差项的正态性假定是否成立。因为我们在对线性关系进行F检验和回归系数进行t检验时,都要求误差项服从正态分布,否则,我们所用的检验程序将是无效的。正态性的简单方法是画出残差的直方图或正态概率图回归分析结果的评价Excel输出的部分回归结果名称名称计算公式计算公式Adjusted R SquareIntercept的抽样标准误差Intercept95%的置信区间斜率95%的置信区间10.3 利用回归方程进行估计和预测10.3.1 点估计点估计10.3.2 区间估计区间估计利用回归方程进行估计和预测1.根据自变量 x 的取值估计或预测因变量 y的取值2.估计或预测的类型点估计y 的平均值的点估计y 的个别值的点估计区间估计y 的平均值的置信区间置信区间估计y 的个别值的预测区间预测区间估计点估计点估计2. 点估计值有n ny y 的的平均值平均值平均值平均值的点估计的点估计n ny y 的的个别值个别值个别值个别值的点估计的点估计3.在点估计条件下,平均值的点估计和个别值的的点估计是一样的,但在区间估计中则不同1.对于自变量 x 的一个给定值x0 ,根据回归方程得到因变量 y 的一个估计值 y 的平均值的点估计n利用估计的回归方程,对于自变量 x 的一个给定值 x0 ,求出因变量 y 的平均值的一个估计值E(y0) ,就是平均值的点估计在前面的例子中,假如我们要估计贷款余额为100亿元时,所有分行不良贷款的平均值,就是平均值的点估计 。根据估计的回归方程得y 的个别值的点估计利用估计的回归方程,对于自变量 x 的一个给定值 x0 ,求出因变量 y 的一个个别值的估计值 ,就是个别值的点估计例如,如果我们只是想知道贷款余额为72.8亿元的那个分行(这里是编号为10的那个分行)的不良贷款是多少,则属于个别值的点估计 。根据估计的回归方程得区间估计区间估计1.点估计不能给出估计的精度,点估计值与实际值之间是有误差的,因此需要进行区间估计2.对于自变量 x 的一个给定值 x0,根据回归方程得到因变量 y 的一个估计区间3.区间估计有两种类型置信区间估计(confidence interval estimate)预测区间估计(prediction interval estimate)置信区间估计1.利用估计的回归方程,对于自变量 x 的一个给定值 x0 ,求出因变量 y 的平均值的估计区间 ,这一估计区间称为置信区间置信区间(confidence interval)2. E(y0) 在1-置信水平下的置信区间为式中:式中:s se e为估计标准误差为估计标准误差置信区间估计(例题分析) 【例例】求出贷款余额为100亿元时,不良贷款95%置信水平下的置信区间 解:根据前面的计算结果,已知n=25, se=1.9799,t(25-2)=2.069 置信区间为当当贷贷款款余余额额为为100100亿亿元元时时,不不良良贷贷款款的的平平均均值值在在2.11412.1141亿元到亿元到3.80593.8059亿元之间亿元之间 预测区间估计(例题分析)【例例】求出贷款余额为72.8亿元的那个分行,不良贷款95%的预测区间 解:根据前面的计算结果,已知n=25, se=1.9799,t(25-2)=2.069 预测区间为贷贷款款余余额额为为72.872.8亿亿元元的的那那个个分分行行,其其不不良良贷贷款款的预测区间在的预测区间在-2.2766-2.2766亿元到亿元到6.13666.1366亿元之间亿元之间 影响区间宽度的因素1.置信水平 (1 - )区间宽度随置信水平的增大而增大2.数据的离散程度s区间宽度随离散程度的增大而增大3.样本容量区间宽度随样本容量的增大而减小4.用于预测的 xp与x的差异程度区间宽度随 xp与x 的差异程度的增大而增大置信区间和预测区间(例题分析)置信区间、预测区间、回归方程xp pyx x预测上限置信上限预测下限置信下限估计和预测需要注意的问题1.在利用回归方程进行估计或预测时,不要用样本数据之外的x值去预测相对应的y值2.因为在一元线性回归分析中,总是假定因变量y与自变量x之间的关系用线性模型表达是正确的。但实际应用中,它们之间的关系可能是某种曲线3.此时我们总是要假定这条曲线只有一小段位于x测量值的范围之内。如果x的取值范围是在xL和xU之间,那么可以用所求出的利用回归方程对处于xL和xU之间的值来估计E(y)和预测y。如果用xL和xU之间以外的值得出的估计值和预测值就会很差 10.4 残差分析10.4.1 用残差证实模型的假定用残差证实模型的假定10.4.2 用残差检测异常值和有影响的观测值用残差检测异常值和有影响的观测值残差(residual)1.因变量的观测值与根据估计的回归方程求出的预测值之差,用e表示2.反映了用估计的回归方程去预测而引起的误差 3.可用于确定有关误差项的假定是否成立 4.用于检测有影响的观测值用残差证实模型的假定残差图(residual plot)1.表示残差的图形关于x的残差图关于y的残差图标准化残差图2.用于判断误差的假定是否成立 3.检测有影响的观测值残差与标准化残差图(例题分析)残差图(形态及判别)(a)(a)满意模式满意模式残残差差x x0 0(b)(b)非常数方差非常数方差残残残差差差x x0 00(c)(c)模型不合适模型不合适残残残差差差x x0 00残差图(例题分析)残差的正态性假定(残差的正态概率图)标准化残差(standardized residual)1.残差除以它的标准差2.也 称 为 Pearson残 差 或 半 学 生 化 残 差 (semi-studentized residuals) 3.计算公式为注意:注意:Excel给出的标准残差的计算公式为 这实际上是学生化删除残差(studentized deleted residuals)标准化残差图 用以直观地判断误差项服从正态分布这一假定是否成立 若假定成立,标准化残差的分布也应服从正态分布在标准化残差图中,大约有95%的标准化残差在-2到+2之间 标准化残差图(例题分析)残差的正态性假定(标准化残差的正态概率图)用残差检测异常值和有影响的观测值异常值(outlier)1.如果某一个点与其他点所呈现的趋势不相吻合,这个点就有可能是异常点,或称为野点如果异常值是一个错误的数据,比如记录错误造成的,应该修正该数据,以便改善回归的效果如果是由于模型的假定不合理,使得标准化残差偏大,应该考虑采用其他形式的模型,比如非线性模型如果完全是由于随机因素而造成的异常值,则应该保留该数据2.在处理异常值时,若一个异常值是一个有效的观测值,不应轻易地将其从数据集中予以剔除 异常值(识别)1.异常值也可以通过标准化残差来识别2.如果某一个观测值所对应的标准化残差较大,就可以识别为异常值3.一般情况下,当一个观测值所对应的标准化残差小于-2或大于+2时,就可以将其视为异常值有影响的观测值1.如果某一个或某一些观测值对回归的结果有强烈的影响,那么该观测值或这些观测值就是有影响的观测值 2.一个有影响的观测值可能是一个异常值,即有一个值远远偏离了散点图中的趋势线对应一个远离自变量平均值的观测值或者是这二者组合而形成的观测值有影响的观测值(图示)不存在影响值的趋势有影响的观测值存在影响值的趋势杠杆率点(ieverage point)1.如果自变量存在一个极端值,该观测值则称为高杠杆率点(high ieverage point)2.在一元回归中,第i个观测值的杠杆率用hi表示,其计算公式为 3.如果一个观测值的杠杆率 ,就可以将该观测值识别为有高杠杆率的点 4.一个有高杠杆率的观测值未必是一个有影响的观测值,它可能对回归直线的斜率没有什么影响 高杠杆率点 (图示)高杠杆率点本章小结1.变量间关系的度量变量间关系的度量2.回归模型、回归方程与估计的回归方程回归模型、回归方程与估计的回归方程3.回归直线的拟合优度回归直线的拟合优度4.回归分析中的显著性检验回归分析中的显著性检验5.估计和预测估计和预测6.用用Excel 进行回归分析进行回归分析
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号