资源预览内容
第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
第4页 / 共5页
第5页 / 共5页
亲,该文档总共5页全部预览完了,如果喜欢就下载吧!
资源描述
学习必备欢迎下载二次函数知识点汇总1. 定义 :一般地,如果cbacbxaxy,(2是常数,)0a,那么y叫做x的二次函数 . 2. 二次函数2axy的性质(1) 抛物线2axy)(0a的顶点是坐标原点,对称轴是y轴.(2) 函数2axy的图像与a的符号关系 . 当0a时抛物线开口向上顶点为其最低点;当0a时抛物线开口向下顶点为其最高点3. 二次函数cbxaxy2的图像是对称轴平行于(包括重合 )y轴的抛物线 . 4. 二次函数cbxaxy2用配方法可化成:khxay2的形式,其中abackabh4422,. 5. 二次函数由特殊到一般,可分为以下几种形式:2axy;kaxy2;2hxay;khxay2;cbxaxy2. 6. 抛物线的三要素:开口方向、对称轴、顶点. a决定抛物线的开口方向:当0a时,开口向上;当0a时,开口向下;a相等,抛物线的开口大小、形状相同 . 平行于y轴( 或重合 ) 的直线记作hx. 特别地,y轴记作直线0x. 7. 顶点决定抛物线的位置. 几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 5 页学习必备欢迎下载8. 求抛物线的顶点、对称轴的方法(1) 公式法:abacabxacbxaxy442222,顶点是),(abacab4422,对称轴是直线abx2. (2) 配方法:运用配方法将抛物线的解析式化为khxay2的形式,得到顶点为 (h,k),对称轴是hx. (3) 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失9. 抛物线cbxaxy2中,cba,的作用(1)a决定开口方向及开口大小,这与2axy中的a完全一样 . (2)b和a共同决定抛物线对称轴的位置. 由于抛物线cbxaxy2的对称轴是直线abx2, 故:0b时,对称轴为y轴;0ab(即a、b同号) 时, 对称轴在y轴左侧;0ab( 即a、b异号) 时, 对称轴在y轴右侧 . (3)c的大小决定抛物线cbxaxy2与y轴交点的位置 . 当0x时,cy,抛物线cbxaxy2与y轴有且只有一个交点(0,c) :0c, 抛物线经过原点; 0c, 与y轴交于正半轴; 0c, 与y轴交于负半轴 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 5 页学习必备欢迎下载以上三点中,当结论和条件互换时,仍成立. 如抛物线的对称轴在y轴右侧,则0ab. 10. 几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标2axy当0a时开口向上当0a时开口向下0x(y轴) (0,0) kaxy20x(y轴) (0, k) 2hxayhx(h,0) khxay2hx(h,k) cbxaxy2abx2(abacab4422,) 11. 用待定系数法求二次函数的解析式 (1) 一般式:cbxaxy2. 已知图像上三点或三对x、y的值,通常选择一般式 . (2) 顶点式:khxay2. 已知图像的顶点或对称轴,通常选择顶点式. (3) 交点式:已知图像与x轴的交点坐标1x、2x,通常选用交点式:21xxxxay. 12. 直线与抛物线的交点 (1)y轴与抛物线cbxaxy2得交点为 (c,0) (2)与y轴平行的直线hx与抛物线cbxaxy2有且只有一个交点(h,cbhah2). (3) 抛物线与x轴的交点精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 5 页学习必备欢迎下载二次函数cbxaxy2的图像与x轴的两个交点的横坐标1x、2x,是对应一元二次方程02cbxax的两个实数根 . 抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:有两个交点0抛物线与x轴相交;有一个交点 (顶点在x轴上 )0抛物线与x轴相切;没有交点0抛物线与x轴相离 . (4) 平行于x轴的直线与抛物线的交点同(3) 一样可能有0 个交点、 1 个交点、 2 个交点 . 当有 2 个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是kcbxax2的两个实数根 . (5) 一次函数0knkxy的图像l与二次函数02acbxaxy的图像G的交点,由方程组cbxaxynkxy2的解的数目来确定:方程组有两组不同的解时l与G有两个交点 ; 方程组只有一组解时l与G只有一个交点;方程组无解时l与G没有交点 . (6) 抛物线与x轴两交点之间的距离:若抛物线cbxaxy2与x轴两交点为0021,xBxA,由于1x、2x是方程02cbxax的两个根,故acxxabxx2121,aaacbacabxxxxxxxxAB444222122122121精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 5 页学习必备欢迎下载13二次函数与一元二次方程的关系:(1) 一元二次方程cbxaxy2就是二次函数cbxaxy2当函数y 的值为 0 时的情况(2) 二次函数cbxaxy2的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数cbxaxy2的图象与x轴有交点时,交点的横坐标就是当0y时自变量x的值,即一元二次方程02cbxax的根(3) 当二次函数cbxaxy2的图象与x轴有两个交点时,则一元二次方程cbxaxy2有两个不相等的实数根; 当二次函数cbxaxy2的图象与x轴有一个交点时,则一元二次方程02cbxax有两个相等的实数根;当二次函数cbxaxy2的图象与x轴没有交点时,则一元二次方程02cbxax没有实数根14. 二次函数的应用:(1) 二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大( 小) 值;(2) 二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大( 小) 值15. 解决实际问题时的基本思路:(1) 理解问题; (2) 分析问题中的变量和常量; (3) 用函数表达式表示出它们之间的关系;(4) 利用二次函数的有关性质进行求解;(5) 检验结果的合理性,对问题加以拓展等精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 5 页
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号