资源预览内容
第1页 / 共14页
第2页 / 共14页
第3页 / 共14页
第4页 / 共14页
第5页 / 共14页
第6页 / 共14页
第7页 / 共14页
第8页 / 共14页
第9页 / 共14页
第10页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
学习必备欢迎下载222111BACCBACC和主备人备课组长签字 _ 教研组长签字 _ 授课教师 _ 第_周星期 _ 日期: 20XX 年_月_日学科章节第一章直角三角形的边角关系适用年级九年级课时数2 课时教学课题1.1 从梯子的倾斜程度谈起教学目标1. 能够用表示直角三角形中两边的比,1. 经历探索直角三角形中边角关系的过程,理解正切、正弦和余弦的意义与现实生活的联系. 2. 能够运用tanA 、sinA 、cosA 表示直角三角形两边的比,表示生活中物体的倾斜程度、坡度等,外能够用进行简单的计算.教学重点1. 理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系. 1. 理解锐角三角函数正弦、余弦的意义,并能举例说明. 2. 能用 tanA、sinA 、 cosA 表示直角三角形两边的比. 3. 能根据直角三角形的边角关系,进行简单的计算. 教学难点1. 理解正切、正弦和余弦的意义,并用它来表示两边的比. 2. 用函数的观点理解正弦、余弦和正切.教学方法引导探索法教学用具教学主要环节和内容设计授课教师修改的主要内容第一课时一、生活中的数学问题: 1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:如图:梯子AB和 EF哪个更陡?你是怎样判断的?以下三组中,梯子AB和 EF哪个更陡?怎样判断?二、直角三角形的边与角的关系(如图,回答下列问题)RtAB1C1和 RtAB2C2有什么关系 ? (2)有什么关系?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 14 页学习必备欢迎下载ABCA的对边 A的邻边斜边如果改变B2在梯子上的位置( 如 B3C3) 呢? 由此你得出什么结论三、正切概念1、想一想通过对前面的问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。当倾斜角确定时,其对边与邻边的比值随之确定。这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。2、正切函数(1)明确各边的名称(2)的邻边的对边AAAtan(3)明确要求: 1)必须是直角三角形;2)是 A的对边与 A的邻边的比值。四、例题:例 1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡? 例 2、在 ABC中, C=90, BC=12cm ,AB=20cm ,求 tanA 和 tanB 的值 . 五、随堂练习:1、如图, ABC是等腰直角三角形,你能根据图中所给数据求出tanC 吗 ? 2、如图,某人从山脚下的点A走了 200m后到达山顶的点B,已知点B到山脚的垂直距离为55m ,求山的坡度.( 结果精确到0.001) 3、若某人沿坡度i 3:4 的斜坡前进10 米,则他所在的位置比原来的位置升高_米 . 4、如图, RtABC 是一防洪堤背水坡的横截面图,斜坡 AB的长为 12 m ,它的坡角为45,为了提高该堤的防洪能力,现将背水坡改造成坡比为 1:1.5 的斜坡AD ,求 DB的长 .( 结果保留根号) 第二课时一、引入二、正弦、余弦函数斜边的对边AAsin,斜边的邻边AAcos巩固练习如图,在 ACB 中, C = 90,ABCABCA的对边A的邻边斜边精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 14 页学习必备欢迎下载1) sinA = ;cosA = ;sinB = ;cosB = ;2) 若 AC = 4,BC = 3 ,则 sinA = ;cosA = ;3) 若 AC = 8,AB = 10 ,则 sinA = ;cosB = ;三、三角函数1、锐角 A 的正切、正弦、余弦都是A 的三角函数。 2、由图讨论梯子的倾斜程度与sinA 和 cosA 的关系:sinA 的值越大,梯子越陡;cosA的值越大,梯子越陡四、讲解例题例 1如图,在RtABC 中, B = 90, AC = 200 ,6.0sin A,求 BC 的长。分析:本例是利用正弦的定义求对边的长。例 2如图,在RtABC 中, C = 90, AC = 10 ,1312cos A,求 AB 的长及 sinB。分析:通过正切函数求直角三角形其它边的长。五、随堂练习1、在等腰三角形ABC中, AB=AC 5,BC=6 ,求 sinB ,cosB,tanB. 2、在 ABC中, C90, sinA 54,BC=20 ,求 ABC的周长和面积 . 3、在 ABC中. C=90 ,若 tanA=21,则 sinA= . 4、已知:如图,CD是 Rt ABC的斜边 AB上的高,求证:BC2 AB BD.( 用正弦、余弦函数的定义证明) ABCABC精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 14 页学习必备欢迎下载主备人备课组长签字 _ 教研组长签字 _ 授课教师 _ 第_周星期 _ 日期: 20XX 年_月_日教学反思学科章节第一章直角三角形的边角关系适用年级九年级课时数1 课时教学课题1.2 30、 45、 60角的三角函数值教学目标1. 经历探索30、45、 60角的三角函数值的过程,能够进行有关的推理. 进一步体会三角函数的意义. 2. 能够进行30、 45、 60角的三角函数值的计算. 3. 能够根据30、 45、 60的三角函数值说明相应的锐角的大小.教学重点1. 探索 30、 45、 60角的三角函数值. 2. 能够进行含30、 45、 60角的三角函数值的计算. 3. 比较锐角三角函数值的大小.教学难点进一步体会三角函数的意义.教学方法自主探索法教学用具教学主要环节和内容设计授课教师修改的主要内容一、问题引入 问题 为了测量一棵大树的高度,准备了如下测量工具:含30和60两个锐角的三角尺;皮尺. 请你设计一个测量方案,能测出一棵大树的高度 . 二、新课 问题 1 、观察一副三角尺,其中有几个锐角?它们分别等于多少度? 问题 2 、sin30 等于多少呢 ?你是怎样得到的?与同伴交流 . 问题 3 、cos30等于多少 ?tan30 呢 ? 问题 4、我们求出了30角的三个三角函数值,还有两个特殊角45、 60,它们的三角函数值分别是多少?你是如何得到的? 结论:三角函数角度sin cotan 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 14 页学习必备欢迎下载304560例 1 计算:(1)sin30 + cos45;(2)30cos31;(3)45cos60sin45sin30cos;(4)45tan45cos60sin22。分析:本例是利用特殊角的三角函数值求解。例 2 填空: (1)已知 A 是锐角,且cosA = 21,则 A = , sinA = ;(2)已知 B 是锐角,且2cosA = 1,则 B = ;(3)已知 A 是锐角,且3tanA 3= 0,则 A = ;例 3一个小孩荡秋千,秋千链子的长度为2.5m,当秋千向两边摆动时,摆角恰好为60,且两边的摆动角相同,求它摆至最高位置时与其摆至最低位置时的高度之差。分析:本例是利用特殊角的三角函数值求解的具体应用。例 4在 RtABC 中, C = 90,ca32,求ca, B、 A。分析:本例先求出比值后,利用特殊角的三角函数值,再确定角的大小。三、随堂练习1. 计算:(1)sin60-tan45 ; (2)cos60+tan60 ;(3) 22sin45 +sin60 -2cos45 ;13230sin1;(2+1)-1+2sin30 -8;(1+2)0- 1-sin30 1+(21)-1;2. 某商场有一自动扶梯,其倾斜角为30 . 高为 7 m,扶梯的长度是多少? 3如图为住宅区内的两幢楼,它们的高AB CD=30 m ,两楼问的距离AC=24 m ,现需了解甲楼对乙楼的采光影响情况. 当太阳光与水平线的夹角为30时,求甲楼的影子在乙楼上有多高?( 精确到 0.1 m ,21.41 ,31.73) ABCOD精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 14 页学习必备欢迎下载主备人备课组长签字 _ 教研组长签字 _ 授课教师 _ 第_周星期 _ 日期: 20XX 年_月_日教学反思学科章节第一章直角三角形的边角关系适用年级九年级课时数教学课题1.3 三角函数的有关计算教学目标1经历用计算器由三角函数值求相应锐角的过程,进一步体会三角函数的意义2能够运用计算器辅助解决含三角函数值计算的实际问题教学重点1经历用计算器由三角函数值求相应锐角的过程,进一步体会三角函数的意义2能够利用计算器进行有关三角函数值的计算教学难点把实际问题转化为数学问题教学方法教学用具教学主要环节和内容设计授课教师修改的主要内容第一课时一、导入新课生活中有许多问题要运用数学知识解决。本节课我们共同探讨运用三角函数解决与直角三角形有关的简单实际问题 1.3、三角函数的有关计算二、讲授新课引入问题1:会当凌绝顶,一览众山小,是每个登山者的心愿。在很多旅游景点,为了方便游客,设立了登山缆车。如图,当登山缆车的吊箱经过点A到达点 B时,它走过了精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 14 页学习必备欢迎下载200m ,已知缆车行驶的路线与水平面的夹角030。那么缆车垂直上升的距离是多少? 分析:在RtABC中, 30, AB=200米,需求出BC. 根据正弦的定义,sin30 =200BCABBC, BC ABsin30200 21=100(米). 引入问题2:当缆车继续由点B到达点 D时,它又走过了200 m,缆车由点B到点 D的行驶路线与水平面的夹角是 45,由此你能想到还能计算什么? 分析:有如下几种解决方案:方案一:可以计算缆车从B点到 D点垂直上升的高度. 方案二:可以计算缆车从A点到 D点,垂直上升的高度、水平移动的距离. 三、变式训练,熟练技能1、一个人从山底爬到山顶,需先爬 40的山坡 300 m ,再爬 30的山坡100 m ,求山高 .( sin400.6428 ,结果精确到0.01 m) 解: 如图,根据题意,可知BC=300 m ,BA=100 m, C=40, ABF=30 . 在 RtCBD中, BD=BCsin40 3000.6428 192.84(m) ;在 RtABF中, AF=ABsin30 =10021=50(m). 所以山高AE=AF+BD 192.8+50 242.8(m). 2、求图中避雷针的长度。(参考数据: tan56 1.4826 ,tan50 1.1918) 解: 如图,根据题意,可知AB=20m , CAB=50 , DAB=56 在 RtDBA中, DB=ABtan56 201.4826 29.652(m) ;在 RtCBA中, CB=ABtan50 201.1918=23.836(m). 所以避雷针的长度DC=DB-CB 29.652-23.8365.82(m). 四、总结反思,情意发展谈一谈: 这节课你学习掌握了哪些新知识?通过这节课的学习你有哪些收获和感想?第二课时一、预习展示,感悟导入在RtABC中,C90,A、B、C所对的边分别为a、b、c(1) 边的关系:( 勾股定理 ) ;(2) 角的关系:;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 14 页学习必备欢迎下载(3) 边角关系: sinA,cosA,tanA;sinB, cosB,tanB二、合作探究随着人民生活水平的提高,农用小轿车越来越多,为了交通安全,某市政府要修建10m高的天桥,为了方便行人推车过天桥,需在天桥两端修建40m长的斜道 ( 如图所示 ) 。这条斜道的倾斜角是多少?探究 1:在RtABC中,BC m,AC m, sinA探究 2:已知 sinA 的值,如何求出A的大小?请阅读以下内容,学会用计算器由锐角三角函数值求相应锐角的大小已知三角函数求角度,要用到 sin 、cos 、tan 键的第二功能 “sin1,cos1,tan 1”和 2ndf 键探究 3:你能求出上图中A的大小吗?解: sinA41 (化为小数) ,三、巩固训练1、如图,工件上有一V形槽,测得它的上口宽20mm ,深 19.2mm ,求 V形角( ACB)的大小 ( 结果精确到1 ) 2、如图,一名患者体内某重要器官后面有一肿瘤在接受放射性治疗时,为了最大限度地保证疗效,并且防止伤害器官, 射线必须从侧面照射肿瘤已知肿瘤在皮下6.3cm 的 A处,射线从肿瘤右侧9.8cm 的 B处进入身体,求射线的入射角度3、某段公路每前进1000 米,路面就升高50 米,求这段公路的坡角4、 一梯子斜靠在一面墙上已知梯长 4m , 梯子位于地面上的一端离墙壁2.5m,求梯子与地面所成的锐角5、精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 14 页学习必备欢迎下载主备人备课组长签字 _ 教研组长签字 _ 授课教师 _ 第_周星期 _ 日期: 20XX 年_月_日教学反思学科章节第一章直角三角形的边角关系适用年级九年级课时数教学课题1.4 船有触礁的危险吗教学目标 1. 经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用. 2. 能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.教学重点1. 经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用. 2. 发展学生数学应用意识和解决问题的能力.教学难点根据题意,了解有关术语,准确地画出示意图.教学方法探索发现法教学用具教学主要环节和内容设计授课教师修改的主要内容一、问题引入:海中有一个小岛A, 该岛四周 10 海里内有暗礁 . 今有货轮由西向东航行,开始在 A岛南偏西55的 B处, 往东行驶 20 海里后,到达该岛的南偏西25的 C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗 ?你是如何想的?与同伴进行交流. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 14 页学习必备欢迎下载二、解决问题:1、如图,小明想测量塔CD的高度 . 他在 A处仰望塔顶,测得仰角为30,再往塔的方向前进50m至 B处. 测得仰角为60. 那么该塔有多高?(小明的身高忽略不计,结果精确到1 m) 2、某商场准备改善原来楼梯的安全性能,把倾角由 40减至 35,已知原楼梯长为4 m,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.0l m) 三、随堂练习1. 如图,一灯柱AB被一钢缆CD固定, CD与地面成 40夹角,且DB 5 m,现再在 C点上方 2m处加固另一条钢缆ED ,那么钢缆ED的长度为多少? 2. 如图 , 水库大坝的截面是梯形ABCD. 坝顶 AD 6m ,坡长 CD 8m.坡底 BC 30m , ADC=135 . (1)求 ABC的大小: (2)如果坝长100 m. 那么建筑这个大坝共需多少土石料?( 结果精确到0.01 m3) 3如图,某货船以20 海里时的速度将一批重要物资由A处运往正西方向的 B 处,经16 小时的航行到达,到达后必须立即卸货. 此时 . 接到气象部门通知,一台风中心正以40 海里时的速度由A向北偏西60方向移动,距台风中心200 海里的圆形区域(包括边界 ) 均受到影响 . (1)问: B处是否会受到台风的影响?请说明理由 . (2)为避免受到台风的影响,该船应在多少小时内卸完货物?( 供选用数据:21.4 ,31.7) 四、课后练习:1. 有一拦水坝是等腰楼形,它的上底是6米, 下底是 10 米, 高为 23米, 求此拦水坝斜坡的坡度和坡角. 2. 如图 , 太阳光线与地面成60角 , 一棵大树倾斜后与地面成36角 , 这时测得大树在地面上的影长约为10 米, 求大树的长 (精确到 0.1 米). 3. 如图 , 公路 MN和公路PQ 在点 P 处交汇 ,且QPN=30 , 点A 处有一所学校,AP=160 米, 假设拖拉机行驶时, 周围 100米以内会受到噪声的影响, 那么拖拉机在公路MN上沿 PN的方向行驶时 , 学校是否会受到噪声影响?请说明理太阳光线B60DA36CNQAMP精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 14 页学习必备欢迎下载由. 4. 如图 , 某地为响应市政府“形象重于生命”的号召, 在甲建筑物上从点A到点 E挂一长为 30 米的宣传条幅 , 在乙建筑物的顶部D点测得条幅顶端A点的仰角为 40, 测得条幅底端E 的俯角为26, 求甲、乙两建筑物的水平距离BC的长 ( 精确到 0.1 米). 5. 如图 , 小山上有一座铁塔AB,在 D处测得点A的仰角为ADC=60 , 点B的仰角为 BDC=45 ; 在E处测得 A的仰角为 E=30 , 并测得DE=90米, 求小山高BC 和铁塔高AB(精确到 0.1 米). 6. 某民航飞机在大连海域失事, 为调查失事原因, 决定派海军潜水员打捞飞机上的黑匣子, 如图所示 , 一潜水员在A处以每小时 8 海里的速度向正东方向划行, 在 A 处测得黑匣子 B在北偏东60的方向 , 划行半小时后到达C 处,测得黑匣子B 在北偏东30 的方向 , 在潜水员继续向东划行多少小时, 距离黑匣子B最近 ,并求最近距离. 7. 以申办 20XX年冬奥会 , 需改变哈尔滨市的交通状况 , 在大直街拓宽工程中, 要伐掉一棵树AB,在地面上事先划定以B为圆心 , 半径与 AB等长的圆形危险区,现在某工人站在离B点 3 米远的 D处测得树的顶点A的仰角为60, 树的底部B 点的俯角为30, 如图所示 , 问距离B点 8 米远的保护物是否在危险区内? 8. 如图 , 某学校为了改变办学条件, 计划在甲教学楼的正北方21 米处的一块空地上(BD=21 米), 再建一幢与甲教学等高的乙教学楼 ( 甲教学楼的高AB=20 米), 设计要求冬至正午时 , 太阳光线必须照射到乙教学楼距地面 5 米高的二楼窗口处, 已知该地区冬至正午时太阳偏南, 太阳光线与水平线夹角为30, 试判断 : 计划所建的乙教学楼是否符合设计要求?并说明理由 . 9. 如图 , 两条带子 , 带子 的宽度为2cm,带子b的宽度为1cm,它们相交成角 , 如果重叠部分的面积为4cm2, 求的度数 . BDACEB30DA60CEba乙教学楼甲教学楼B30DAC南F30北A60CBDACEF精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 14 页学习必备欢迎下载主备人备课组长签字 _ 教研组长签字 _ 授课教师 _ 第_周星期 _ 日期: 20XX 年_月_日教学反思学科章节第一章直角三角形的边角关系适用年级九年级课时数1 课时教学课题1.5 测量物体的高度教学目标1、经历运用仪器进行实地测量以及撰写活动报告的过程. 2、能够对所得到的数据进行分析. 3、能综合应用直角三角形的边角关系的知识解决实际问题.教学重点1、运用仪器进行实地测量以及撰写活动报告. 2、综合运用直角三角形的边角关系的知识解决实际问题.教学难点活动时的组织和调控,撰写活动报告教学方法教学用具教学主要环节和内容设计授课教师修改的主要内容新知学习:问题 1. 下表是小明同学填写活动报告的部分内容: 课题在两岸近似平行的河段上测量河宽精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 14 页学习必备欢迎下载测量目标图示BDACE测得数据CAD=60 ,AB=30m,CBD=45 , BDC=90 请你根据以上的条件, 计算出河宽CD(结果保留根号 ). 问题2. 下面是活动报告的一部分, 请填写“测得数据”和“计算”两栏中未完成的部分. 课题测量旗杆高测量示意图BDACE测得数据测量项目第一次第二次平均值BD的长24.19m 23.97m 测倾器的高CD=1.23m CD=1.19m 倾斜角a=3015a=2945a=30计算旗杆高 AB(精确到 0.1m) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 14 页学习必备欢迎下载问题3. 学习完本节内容后, 某校九年级数学老师布置一道利用测倾器测量学校旗杆高度的活动课题, 下表是小明同学填写的活动报告, 请你根据有关测量数据 , 求旗杆高AB(计算过程填在下表计算栏内). 教学反思精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 14 页
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号