资源预览内容
第1页 / 共11页
第2页 / 共11页
第3页 / 共11页
第4页 / 共11页
第5页 / 共11页
第6页 / 共11页
第7页 / 共11页
第8页 / 共11页
第9页 / 共11页
第10页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
直线与椭圆的位置关系直线与椭圆的位置关系怎么判断它们之间的位置关系?怎么判断它们之间的位置关系?drd00直线与圆相交直线与圆相交有两个公共点;有两个公共点; (2)=0 直线与圆相切直线与圆相切有且只有一个公共点;有且只有一个公共点; (3)0 直线与圆相离直线与圆相离无公共点无公共点问题问题2:怎么判断它们之间的位置关系?能用几何法吗?:怎么判断它们之间的位置关系?能用几何法吗?问题问题1:椭圆与直线的位置关系?:椭圆与直线的位置关系?不能!不能!所以只能用所以只能用代数法代数法-求解直线与二次曲线求解直线与二次曲线相关问题的通相关问题的通法法因为他们不像圆一样有统一的半径。因为他们不像圆一样有统一的半径。考点一:直线和椭圆的位置关系考点一:直线和椭圆的位置关系已知已知1.联立方程组联立方程组3.计算一元二次方程的判别式计算一元二次方程的判别式4.若若 0 ,说明直线与椭圆相交,说明直线与椭圆相交 若若 = 0 ,说明直线与椭圆相切,说明直线与椭圆相切 若若 0,因为因为所以方程()有两个根,所以方程()有两个根,则原方程组有两组解则原方程组有两组解.- (1)所以该直线与椭圆相交所以该直线与椭圆相交. 一.直线与椭圆的位置关系的判定mx2+nx+p=0(m 0)Ax+By+C=0由方程组:由方程组:0相交相交方程组有两解方程组有两解两个交点两个交点代数法代数法= n2-4mp这是求解直线与二这是求解直线与二次曲线有关问题的次曲线有关问题的通法。通法。例例1.已知直线已知直线y=x- 与椭圆与椭圆x2+4y2=2,判断它们,判断它们的位置关系。的位置关系。x2+4y2=2解:联立方程组解:联立方程组消去消去y=360,因为因为所以方程()有两个根,所以方程()有两个根,变式变式1:交点坐标是什么?:交点坐标是什么?弦长公式:弦长公式:则原方程组有两组解则原方程组有两组解.- (1)所以该直线与椭圆相交所以该直线与椭圆相交.变式变式2:相交所得的弦的弦长是多少?:相交所得的弦的弦长是多少?由韦达定理由韦达定理 k表示弦的斜率,表示弦的斜率,x1、x2表示弦的端点坐标表示弦的端点坐标 设直线与椭圆交于设直线与椭圆交于A(x1,y1),B(x2,y2)两点,两点, 直线直线AB的斜率为的斜率为k弦长公式:弦长公式:考点二:弦长公式考点二:弦长公式例例2:已知斜率为:已知斜率为1的直线的直线l过椭圆过椭圆 的右焦点,的右焦点,交椭圆于交椭圆于A,B两点,求弦两点,求弦AB之长之长题型二:弦长问题题型二:弦长问题 1、直线与椭圆的三种位置关系及判断方法;、直线与椭圆的三种位置关系及判断方法;2、弦长的计算方法:、弦长的计算方法:弦长公式:弦长公式: |AB|= = (适用于任何二次曲线)(适用于任何二次曲线) 小小 结结解方程组消去其中一元得一元二次型方程解方程组消去其中一元得一元二次型方程 0 相交相交
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号