资源预览内容
第1页 / 共20页
第2页 / 共20页
第3页 / 共20页
第4页 / 共20页
第5页 / 共20页
第6页 / 共20页
第7页 / 共20页
第8页 / 共20页
第9页 / 共20页
第10页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
12.2.3三角形全等的判定三角形全等的判定(ASA和和AAS)1青苗辅导11.什么样的图形是全等三角形?什么样的图形是全等三角形?2.判定两个三角形全等要具备什么判定两个三角形全等要具备什么条件条件? 边边边边边边:三:三边边对应相等的两个对应相等的两个 三角形全等。三角形全等。边角边边角边:有有两边两边和它们和它们夹角夹角对应对应相等的两个三角形全等相等的两个三角形全等复习引入复习引入sssSAS2青苗辅导1 一张教学用的三角形硬纸板不小心一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来被撕坏了,如图,你能制作一张与原来同样大小的新教具?能恢复原来三角形同样大小的新教具?能恢复原来三角形的原貌吗?的原貌吗?怎么办?可以帮帮我吗?创设情景,实例引入3青苗辅导1 先任意画出一个先任意画出一个ABC,再画一个,再画一个A/B/C/,使,使A/B/=AB, A/ =A, B/ =B (即使两角和它们的夹边对应即使两角和它们的夹边对应相等相等)。把画好的。把画好的A/B/C/剪下,放到剪下,放到ABC上,它们全等吗?上,它们全等吗?探究1B BA AC C4青苗辅导1有有两角两角和它们和它们夹边夹边对应相等的两个三角形对应相等的两个三角形全等全等( (简写成简写成“角边角角边角”或或“ASAASA”)。)。探究反映的规律是:角边角判定定理角边角判定定理A=D (已知已知 ) AB=DE(已知已知 )B=E(已知已知 )在在ABC和和DEF中中 ABCDEF(ASA)几何语言表示几何语言表示AB CDEF5青苗辅导1例1: 已知如图,已知如图,O是是AB的中点,的中点,A=B,ABCDO12 O是是AB的中点的中点(已知)已知) OA=OB(中点定义)中点定义)求证:求证:AOCBOD在在AOC和和BOD中中证明:证明:A= BOA=OB1= 2(已知)已知)(已证)已证)(对顶角相等)对顶角相等) AOCBOD(ASA)6青苗辅导1例例2:已知:点已知:点D在在AB上,点上,点E在在AC上,上,BE和和CD相交于点相交于点O,AB=AC, B= C求证:求证:AD=AE.BAECDO证明:在证明:在ADC和和AEB中中A= AAC=ABC= B(公共角)公共角)(已知)已知)(已知)已知)ADCAEB(ASA)AD=AE又又AB=ACBD=CE(全等三角形的对应边相等)(全等三角形的对应边相等)(已知)已知)(等式性质等式性质1)BD=CE吗?吗?7青苗辅导1利用利用利用利用“ “角边角角边角角边角角边角” ”可知可知可知可知, ,带第带第带第带第(2)(2)块去,块去,块去,块去,可以配到一个与原来全等的三角可以配到一个与原来全等的三角可以配到一个与原来全等的三角可以配到一个与原来全等的三角形玻璃。形玻璃。形玻璃。形玻璃。(1)(2)8青苗辅导1在在ABC和和DEF中,中,A=D,B=E ,BC=EF,ABC与与DEF全等吗?能利用角边角全等吗?能利用角边角条件证明你的结论吗?条件证明你的结论吗?探究探究2ABCDEF9青苗辅导1ABCDEF已知已知A=D,B=E,BC=EF.求证:求证:ABCDEF.证明:明:AD,BE 又又C180AB, F180DE CF 在在ABC和和DEF中中BEBCEFCFABCDEF(ASA)两角和它们其中两角和它们其中一角的对边对应一角的对边对应相等的两个三角相等的两个三角形全等形全等. .(简写写为“角角角角边”或或“AAS”)10青苗辅导1在在ABC与与DEF中中ABCDEF(AAS)几何语言几何语言A= DB= EBC= EFABCDEF11青苗辅导1例例2 2、已知如图,、已知如图, 1 12 2, C CDD求证:求证:ADADAC.AC.1ABDC2证明:明:在在ABD和和ABC中中12DCABABABDABC(AAS)ADAC12青苗辅导1变式变式1 1:已知如图,:已知如图, 1 12 2,ABDABDABCABC 求证:求证:ADADAC.AC.1ABDC2证明:明:在在ABD和和ABC中中12ABABABDABCABDABC(ASA)ADAC13青苗辅导1变式变式2 2:已知如图,:已知如图, 1 12 2,3 344 求证:求证:ADADAC.AC.1ABDC234证明:明:34 ABDABC 在在ABD和和ABC中中12ABABABDABCABDABC(ASA)ADAC为什么?等角的补角相等等角的补角相等或或等式性质等式性质114青苗辅导1练习练习1.如图,填什么就有如图,填什么就有 AOC BODA=B(已知)(已知) AC=BD (已知)(已知) C=D (已知)(已知)AOCBOD( ASA )在在AOC和和BOD中中15青苗辅导12.如图,如图,A=B(已知)(已知) AOC=BOD ( 对顶角相等对顶角相等 ) CA=DB (已知)(已知)ADCBOD( AAS )在在AOC和和BOD中中16青苗辅导1小测:如图,小测:如图,ABBC,ADDC, 1=2。 求证求证ABAD。ABCD1217青苗辅导1知识应用2.如图,要测量河两岸相对的两点如图,要测量河两岸相对的两点A,B 的距离,可以在的距离,可以在AB的垂线的垂线BF上取两点上取两点 C,D,使,使BC=CD,再定出,再定出BF的垂线的垂线 DE,使,使A, C,E在一条直线上,这时在一条直线上,这时 测得测得DE的长就是的长就是AB的长。为什么?的长。为什么?ABC DEF18青苗辅导11.你能总结出我们学过哪些判定三角形你能总结出我们学过哪些判定三角形 全等的方法吗?全等的方法吗?2.要根据题意选择适当的方法。要根据题意选择适当的方法。3.证明线段或角相等,可以证明它们所证明线段或角相等,可以证明它们所 在的两个三角形全等。在的两个三角形全等。注意角角边、角边角中注意角角边、角边角中两角与边的区别两角与边的区别19青苗辅导1再 见!20青苗辅导1
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号