资源预览内容
第1页 / 共15页
第2页 / 共15页
第3页 / 共15页
第4页 / 共15页
第5页 / 共15页
第6页 / 共15页
第7页 / 共15页
第8页 / 共15页
第9页 / 共15页
第10页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
1.3 反比例函数的应用反比例函数的应用复习回顾复习回顾(1)反比例函数)反比例函数 ( k为常数,为常数,k0)的图象是的图象是双曲线双曲线;(2)当)当k0,双曲线的两支分别位于第,双曲线的两支分别位于第一一、第、第三三象限,在每个象限内,象限,在每个象限内,y值随值随x值的值的增大而减小增大而减小;(3)当)当k0,双曲线的两支分别位于第,双曲线的两支分别位于第二二、第、第四四象限,在每个象限内,象限,在每个象限内,y值随值随x值的值的增大而增大增大而增大. 某校科技小某校科技小组在一次在一次野外考察野外考察途中途中,遇到,遇到一一片片烂泥湿地泥湿地. .为了安全、迅速了安全、迅速地地通通过这片湿地,他片湿地,他们沿着前沿着前进路路线铺垫了若干了若干块木板,构筑成一条木板,构筑成一条临时通道,从而通道,从而顺利利通过了这片湿地通过了这片湿地. . 动脑筋动脑筋 (1 1)根据压力)根据压力F(N N)、压强)、压强 p(Pa)(Pa)与受力面积与受力面积S( (m2) )之间的关系式之间的关系式 , ,请你判断:当请你判断:当F一定时,一定时,p 是是 S 的的反比例函数吗?反比例函数吗? (2 2)若人对地面的压力)若人对地面的压力 F= =450 N N,完成下表:,完成下表: (3 3)当)当 F= =450 N N 时,试画出该函数的图象,并结时,试画出该函数的图象,并结合图象分析当受力面积合图象分析当受力面积 S 增大时,地面所受压强增大时,地面所受压强 p是是如何变化的如何变化的. .据此,请说出他们铺垫木板(木板受力据此,请说出他们铺垫木板(木板受力忽略不计)通过湿地的道理忽略不计)通过湿地的道理. . 受力面积受力面积 S(m2)0.0050.010.020.04 压强压强 p(Pa)(Pa)探究探究 (1 1)对于)对于 ,当,当 F 一定时,根据反比例一定时,根据反比例函数的定义可知,函数的定义可知,p 是是 S 的的反比例函数反比例函数. . 受力面积受力面积 S(m2)0.0050.010.020.04 压强压强 p(Pa)(Pa)90 00045 00022 50011 250 (2 2)因为)因为 F= =450 N N,所以由,所以由 ,填表如下:,填表如下: (3 3)当)当 F= =450 N N 时,该反比例函数的表达式为时,该反比例函数的表达式为 ,它的图象如图所示,它的图象如图所示. .由图象的性质可知,当受力面积由图象的性质可知,当受力面积 S 增大增大时,地面所受压强时,地面所受压强 p 会越来越小会越来越小. .因此,该科技小组通过铺垫木因此,该科技小组通过铺垫木板的方法来增大受力面积,以减小地面所受压强,从而可以顺板的方法来增大受力面积,以减小地面所受压强,从而可以顺利地通过湿地利地通过湿地. .例例 题题 已知某电路的电压已知某电路的电压U(V V)、电流、电流I(A A)、电、电阻阻R()三者之间有如下关系式:三者之间有如下关系式:U= =IR,且该,且该电路的电压电路的电压U恒为恒为220V.220V. (1 1)写出电流)写出电流I关于电阻关于电阻R的函数表达式;的函数表达式; (2 2)如果该电路的电阻为)如果该电路的电阻为200200,则通过它,则通过它的电流是多少?的电流是多少? (3 3)如果该电路接入的是一个滑动变阻器,)如果该电路接入的是一个滑动变阻器,怎样调整电阻怎样调整电阻R,就可以使电路中的电流,就可以使电路中的电流I增大?增大? 由于该电路的电压由于该电路的电压U为定值,为定值, 即该电即该电路的电阻路的电阻R与电流与电流I的乘积为定值,因此该的乘积为定值,因此该电路的电阻电路的电阻R与电流与电流I成反比例函数关系成反比例函数关系. 解:解:(1)因为因为U= =IR,且,且U=220V=220V,所以,所以IR=220=220,即,即该电路的该电路的电流电流I关于电阻关于电阻R的函数表达式为的函数表达式为(2)因为该电路的电阻因为该电路的电阻R=200=200,所以通过该电路的所以通过该电路的电流电流I= = (A A). .(3)根据反比例函数的图象及性质可知,当滑动变阻根据反比例函数的图象及性质可知,当滑动变阻器的电阻器的电阻R减小时,就可以使电路中的减小时,就可以使电路中的电流电流I增大增大. .跟踪练习跟踪练习 1A、B两城市相距两城市相距720千米,一列火千米,一列火车从车从A城去城去B城城.(2)若到达目的地后,按原路匀速原回,)若到达目的地后,按原路匀速原回,并要求在并要求在3小时内回到小时内回到A城,则返回的速度城,则返回的速度不能低于不能低于_(1)火车的速度)火车的速度v(千米(千米/时)和行驶的时)和行驶的时间时间t(时)之间的函数关系是(时)之间的函数关系是_v= ;240千米千米/小时小时.跟踪练习跟踪练习3已知矩形的面积为已知矩形的面积为10,则它的长,则它的长y与宽与宽x之间的关系用图象大致可表示为之间的关系用图象大致可表示为( ) 2有一面积为有一面积为60的梯形,其上底长的梯形,其上底长是下底长的是下底长的 ,若下底长为,若下底长为x,高为,高为y,则则y与与x的函数关系是的函数关系是_.y=A跟踪练习跟踪练习4.为了预防流行性感冒,某学校对教室采为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒用药熏消毒法进行消毒.已知,药物燃烧时,已知,药物燃烧时,室内每立方米空气中的含药量室内每立方米空气中的含药量y(毫克)与(毫克)与时间时间x(分钟)成正比例,药物燃烧后,(分钟)成正比例,药物燃烧后,y与与x成反比例(如图所示)成反比例(如图所示).现测得药物现测得药物8分分钟燃毕,此室内空气中每立方米的含药量钟燃毕,此室内空气中每立方米的含药量为为6毫克,请你根据题中所提供的信息,解毫克,请你根据题中所提供的信息,解答下列问题:答下列问题:(1)药物燃烧时)药物燃烧时y关于关于x的函数关系式的函数关系式为:为:y= x ,自变量的取值范围,自变量的取值范围是:是: ;药物燃烧后;药物燃烧后y与与x的函数的函数关系式为关系式为:y=_. 0x8(2)研究表明,当空气中每立方米的含)研究表明,当空气中每立方米的含药量低于药量低于1.6毫克时学生方可进教室,那毫克时学生方可进教室,那么从消毒开始,至少需要经过么从消毒开始,至少需要经过 分钟后,分钟后,学生才能回到教室;学生才能回到教室; 30 (3)研究表明,当空气中每立方米的含药)研究表明,当空气中每立方米的含药量不低于量不低于3毫克且持续时间不低于毫克且持续时间不低于10分钟分钟时,才能有效杀灭空气中的病菌,那么此时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?次消毒是否有效?为什么? 有效,因为燃烧时第有效,因为燃烧时第4分钟含药量开分钟含药量开始高于始高于3毫克,当到第毫克,当到第16分钟含药量开始分钟含药量开始低于低于3毫克,这样含药量不低于毫克,这样含药量不低于3毫克的毫克的时间共有时间共有164=12分钟,故有效分钟,故有效. 【答案】【答案】
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号