资源预览内容
第1页 / 共11页
第2页 / 共11页
第3页 / 共11页
第4页 / 共11页
第5页 / 共11页
第6页 / 共11页
第7页 / 共11页
第8页 / 共11页
第9页 / 共11页
第10页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
一、拉格朗日配方法的具体步骤一、拉格朗日配方法的具体步骤用正交变换化二次型为标准形,其特点是用正交变换化二次型为标准形,其特点是保保持几何形状不变持几何形状不变问题问题有没有其它方法,也可以把二次型化有没有其它方法,也可以把二次型化为标准形?为标准形?问题的回答是肯定的。下面介绍一种行之有问题的回答是肯定的。下面介绍一种行之有效的方法效的方法拉格朗日配方法拉格朗日配方法1.若二次型含有若二次型含有 的平方项,则先把含有的平方项,则先把含有 的乘积项集中,然后配方,再对其余的变量同的乘积项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过非退化线样进行,直到都配成平方项为止,经过非退化线性变换,就得到标准形性变换,就得到标准形; 拉格朗日配方法的步骤拉格朗日配方法的步骤2.若二次型中不含有平方项,但是若二次型中不含有平方项,但是 则先作可逆线性变换则先作可逆线性变换化二次型为含有平方项的二次型,然后再按化二次型为含有平方项的二次型,然后再按1中方中方法配方法配方.解解例例1 1含有平方项含有平方项去掉配方后多出来的项去掉配方后多出来的项所用变换矩阵为所用变换矩阵为解解例例2 2由于所给二次型中无平方项,所以由于所给二次型中无平方项,所以再配方,得再配方,得所用变换矩阵为所用变换矩阵为二、小结二、小结将一个二次型化为标准形,可以用将一个二次型化为标准形,可以用正交变换正交变换法法,也可以用,也可以用拉格朗日配方法拉格朗日配方法,或者其它方法,或者其它方法,这取决于问题的要求如果要求找出一个正交矩这取决于问题的要求如果要求找出一个正交矩阵,无疑应使用正交变换法;如果只需要找出一阵,无疑应使用正交变换法;如果只需要找出一个可逆的线性变换,那么各种方法都可以使用个可逆的线性变换,那么各种方法都可以使用正交变换法的好处是有固定的步骤,可以按部就正交变换法的好处是有固定的步骤,可以按部就班一步一步地求解,但计算量通常较大;如果二班一步一步地求解,但计算量通常较大;如果二次型中变量个数较少,使用拉格朗日配方法反而次型中变量个数较少,使用拉格朗日配方法反而比较简单需要注意的是,比较简单需要注意的是,使用不同的方法使用不同的方法,所所得到的标准形可能不相同得到的标准形可能不相同,但标准形中含有的项但标准形中含有的项数必定相同数必定相同,项数等于所给二次型的秩项数等于所给二次型的秩思考题思考题
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号