资源预览内容
第1页 / 共105页
第2页 / 共105页
第3页 / 共105页
第4页 / 共105页
第5页 / 共105页
第6页 / 共105页
第7页 / 共105页
第8页 / 共105页
第9页 / 共105页
第10页 / 共105页
亲,该文档总共105页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第一章 土方工程 第一节 概述 一、土方工程的特点与施工要求 1.土方工程施工的特点 (1)面广量大、劳动繁重。 (2)施工条件复杂。 2.组织土方工程施工的要求 (1)在条件允许的情况下应尽可能采用机械化施工;(2)要合理安排施工计划,尽量避开冬、雨期施工; (3)为了降低土石方工程施工费用,减少运输量和占用农田,要对土方进行合理调配、统筹安排。 (4)在施工前要做好调查研究, 拟定合理的施工方案和技术措施,以保证工程质量和安全,加快施工进度。二、土的工程分类及性质 (一)土的工程分类 土的分类方法较多,在施工中按开挖的难易程度将土分为八类。(二)土的工程性质 1土的质量密度分天然密度和干密度。土的天然密度,是指土在天然状态下单位体积的质量,用表示;它影响土的承载力、土压力及边坡的稳定性。土的干密度,是指单位体积土中固体颗粒的质量,用d表示;它是检验填土压实质量的控制指标。 2土的含水量 土的含水量W是土中所含的水与土的固体颗粒间的质量比,以百分数表示:W= C湿 G干 G干 100%(11)式中 C湿含水状态时土的质量; G干烘干后土的质量。3.土的渗透性 土的渗透性是指水在土体中渗流的性能,一般以渗透系数K表示。 达西地下水流动速度公式v =KI, 4土的可松性土具有可松性,即自然状态下的土,经过开挖后,其体积因松散而增加,以后虽经回填压实,仍不能恢复其原来的体积。 三、土方三、土方边坡坡度坡坡度土方边坡坡度 图11 边坡坡度示意四、土方施工的准备工作四、土方施工的准备工作(1)制定施工方案(2)场地清理(3)排除地面水 (4)修筑好临时道路及供水、供电等临时设施。 (5)做好材料、机具、物资及人员的准备工作。 (6)设置测量控制网,打设方格网控制桩,进行建筑物、构筑物的定位放线等。 (7)根据土方施工设计做好边坡稳定、基坑(槽)支护、降低地下水等土方工程的辅助工作。第二第二节 土方土方计算与算与调配配一、基坑、基槽和路堤的土方量计算一、基坑、基槽和路堤的土方量计算 基坑土方量即可按拟柱体的体积公式式中 H基坑深度(m); F1,F2基坑上下两底面积(m2); F0F1与F2之间的中截面面积(m2); 当基槽和路堤沿长度方向断面呈连续性变化时其土方量可以用同样方法分段计算。式中 V1第一段的土方量(m3); L1第一段的长度(m); 将各段土方量相加即得总土方量,即: 式中 V1,V2Vn为各分段土的土方量(m3)。 二、场地平整标高与土方量二、场地平整标高与土方量 (一)确定场地设计标高 1初步设计标高 场地设计标高即为各个方格平均标高的平均值。可按下式计算:式中:H。所计算的场地设计标高(m); a方格边长(m); N方格数;H1l,H22任一方格的四个角点的标高(m)。 图14 场地设计标高H0计算示意图 (a)方格网划分;(b)场地设计标高示意图 1一等高线;2-自然地面,3一场地设计标高平面 (a) (b) H22个方格共有的角点标高; H33个方格共有的角点标高; H44个方格共有的角点标高。则场地设计标高H0可改写成下列形式如令H11个方格仅有的角点标高; 2场地设计标高的调整 (1)土的可松性影响 H0H0+h式中:Vw按理论标高计算出的总挖方体积;FW,FT按理论设计标高计算出的挖方 区、填方区总面积; Ks土的最后可松性系数。图15 考虑土的可松性调整设计标高计算示意图(a)(b)(2)场内挖方和填土的影响(3)场地泄水坡度的影响 1)单向泄水时各方格角点的设计标高 HnH0li (a)(b) 图16 场地泄水坡度示意图 (a)单向泄水;(b)双向泄水 2)双向泄水时各方格角点的设计标高 HnH0lxixlyiy (a)(b) 图16 场地泄水坡度示意图 (a)单向泄水;(b)双向泄水 (二)场地土方量计算 1.计算场地各方格角点的施工高度各方格角点的施工高度(即挖、填方高度)h0 hnHn-Hn (113)式中 hn该角点的挖、填高度,以“”为填方高度,以“”为挖方高度(m); Hn该角点的设计标高(m); Hn该角点的自然地面标高(m)。2.绘出“零线”方格线上的零点位置见图19,可按下式计算: 式中:h1,h2相邻两角点挖、填方施工高度(以绝对值代入);a方格边长;x零点距角点A的距离。 图19 零点位置计算 3.场地土方量计算(1)四方棱柱体法 1)全挖全填格式中: V挖方或填方的土方量(m);h1,h2,h3,h4方格四个角点的挖填高度,以绝对值代人(m)。 2)部分挖部分填格(2)三角棱柱体法 1)全挖全填式中 a方格边长(m); hl,h2,h3三角形各角点的施工高度(m),用绝对值代人。 图113 按地形将方格划分成三角形2)有挖有填其中锥体部分的体积为:楔体部分的体积为:三、土方调配与优化三、土方调配与优化 (一) 划分土方调配区,计算平均运距或土方施工单价 1调配区的划分 2平均运距的确定 3土方施工单价的确定 (二)最优调配方案的确定 1.编制初始调配方案编制初始调配方案土方的总运输量为:Z050050+50040+30060100110+10070+4004097000(m3m)。挖填B1B2B3挖方量A1500 5070100500A270500 4090500A33006010011010070500A48010040040400填方量80060050019002.最优方案判别利用“最小元素法”编制初始调配方案,其总运输量是较小的。但不一定是总运输量最小,因此还需判别它是否为最优方案。判别的方法有“闭回路法”和“位势法”,其实质相同,都是用检验数ij来判别。只要所有的检验数ij0,则该方案即为最优方案;否则,不是最优方案,尚需进行调整。为了使线性方程有解,要求初始方案中调动的土方量要填够mn1个格(m为行数,n为列数),不足时可在任意格中补“0”。如:表14中已填6个格,而mn13416,满足要求。 下面介绍用“位势法”求检验数: (1)求位势Ui和Vj 位势和就是在运距表的行或列中用运距(或单价)Cij同时减去的数,目的是使有调配数字的格子检验数ij为零,而对调配方案的选取没有影响。 计算方法:将初始方案中有调配数方格的Cij列出,然后按下式求出两组位势数Ui(i1,2,m)和Vj(j1,2,n)。 CijUiVj (120)式中 Cij平均运距(或单位土方运价或施工费用); Ui,Vj位势数。例如,本例两组位势数计算:设 U10,则 V1 C11U150050; U3 C31V1605010; V211010100; ,见表13所示。 例如,本例两组位势数计算: 设 U10,则 V1 C11U150050; U3 C31V1605010; V211010100; ,见下表所示。挖挖 填填位势数位势数B1B2B3位势数位势数Ui VjA1500 5070100A2705004090A3300 60 10011010070A480100400 40(2)求检验数ij ijCijUiVj 127001003013100060402170(60)50802390(60)6090挖挖 填填B1B2B3UiVjV1=50V2=100V3=60A1U1=0070100A2U2=-6070090A3U3=10000A4U4=-20801000位势数位势数5060110404070求检验数表+80-30+40+90+50+20 3.方案的调整 (1)在所有负检验数中选取最小的一个(本例中为C12),把它所对应的变量X12作为调整的对象。(2)找出X12的闭回路:从X12出发,沿水平或竖直方向前进,遇到有调配土方数字的格子作90转弯,然后依次继续前进,直到再回到出发点,形成一条闭回路(表15)。 (3)从空格X12出发,沿着闭回路方向,在各奇数次转角点的数字中,挑出一个最小的土方量(本表即为500、100中选100),将它调到空格中 (即由X32调到X12中)。(4)同时将闭回路上其他奇数次转角上的数字都减去该调动值(100m3),偶次转角上数字都增加该调动值,使得填、挖方区的土方量仍然保持平衡,这样调整后,便得到了新的调配方案。见表16中括号内数字。填方量填方量 填填挖挖B1B2B3挖方量挖方量A1 500A2 500A3 500A4 400800600 5001900400500500300100100(400)(400)(0)(100)0 X12(400)再求位势及空格的检验数再求位势及空格的检验数 若检验数仍有负值,则重复以上步骤,直到全部ij0而得到最优解。(4)绘出调配图)绘出调配图: (包括调运的流向、数量、运距)。(包括调运的流向、数量、运距)。(5) 求出最优方案的总运输量:求出最优方案的总运输量: 40050100705004040060100704004094000m3-m。+40+50+60+50+50U1=0V1=50V2=70U2=30U3=10V3=60U4=20位势数位势数挖挖 填填B1B2B3UiVjA1A2A3A4506011040407080100707010090+300000004.绘制土方调配图图117 土方调配图箭线上方为土方量(m3),箭线下方为运距(m)第三节第三节 排水与降水排水与降水一、地面排水一、地面排水排除地面水(包括雨水、施工用水、生活污水等)常采用在基坑周围设置排水沟、截水沟或筑土堤等办法,并尽量利用原有的排水系统,或将临时性排水设施与永久性设施相结合使用。二、集水井排水或降水二、集水井排水或降水 集水井法是在基坑开挖过程中,沿坑底的周围或中央开挖排水沟,并在基坑边角处设置集水井。将水汇入集水井内,用水泵抽走(图118)。这种方法可用于基坑排水,也可用于降水。 图1-18集水井降水法 1排水沟;2集水井;3离心式水泵;4基础边线;5原地下水位线;6降低后地下水位线1排水沟的设置 排水沟底宽应不少于0.20.3m,沟底设有0.20.5的纵坡, 在开挖阶段,排水沟深度应始终保持比挖土面低0.40.5m2.集水井的设置集水井应设置在基础范围以外的边角处。间距应根据水量大小、基坑平面形状及水泵能力确定,一般为2040m。 3水泵性能与选用 (1)离心泵 泵体是由泵壳、泵轴及叶轮等主要部件组成,其管路系统包括滤网与底阀、吸水管及出水管等 图1-19 离心泵工作简图1泵壳;2泵轴;3叶轮;4滤网与底阀;5吸水管;6出水管(2)潜水泵 潜水泵是由立式水泵与电动机组合而成,工作时完全浸在水中。 水泵装在电动机上端,叶轮可制成离心式或螺旋桨式;电动机设有密封装置。 图120 潜水泵工作简图1叶轮;2轴;3电动机;4进水口;5出水胶管;6电缆三、流砂及其防治三、流砂及其防治 1流砂发生的原因 动水压力是流砂发生的重要条件。流动中的地下水对土颗粒产生的压力称为动水压力,其性质通过图121所示的试验说明。 Wh1FWh2FTLF0图121 动水压力原理图 (a) 水在土中渗流的力学现象;(b) 动水压力对地基土的影响 l、2土颗粒(a)(b)1TLF由上式可知,动水压GD=-T与水力坡度I成正比,水位差越大,动水压力越大,而渗透路程越长,动水压力越小。 产生流砂现象主要是由于地下水的水力坡度大,即动水压力大,而且动水压力的方向(与水流方向一致)与土的重力方向相反,土不仅受水的浮力,而且受动水压力的作用,有向上举的趋势,当动水压力等于或大于土的浸水密度时,土颗粒处于悬浮状态,并随地下水一起流入基坑,即发生流砂现象。 流砂可能发生的土层土层中粉粒含量大于,粘小于级配不均匀系数小于土的天然孔隙比大于土的天然含水量大于流砂经常发生在细砂,粉砂及亚砂土中,是否发生流砂主要取决于动水压力的大小和方向经验表明在可能发生的土层处,基坑挖深超过地下水位线m左右就会发生流砂2流砂的防治 流砂防治的主要途径是减小或平衡动水压力或改变其方向。具体措施为: (1)抢挖法 (2)水下挖土法 (3)打钢板桩或作地下连续墙法 (4)在枯水季节开挖 (5)井点降水法四、井点降水法四、井点降水法 井点降水法就是在基坑开挖前,预先在基坑四周埋设一定数量的滤水管(井),利用抽水设备从中抽水,使地下水位降落到坑底标高以下,并保持至回填完成或地下结构有足够的抗浮能力为止。 (一)轻型井点(一)轻型井点1.轻型井点设备 轻型井点设备是由管路系统和抽水设备组成。管路系统包括:井点管(由井管和滤管连接而成)、弯联管及总管等。 图1-22 轻型井点法降低地下水位全貌图1井管;2滤管;3总管;4弯联管;5水泵房 6原有地下水位线;7降低后地下水位线 图1-23 滤管构造 1钢管;2管壁上的小孔;3缠绕的塑料管;4细滤网;5粗滤网;6粗铁丝保护网;7井管;8铸铁头 图124 真空泵轻型井点设备工作原理简图 l滤管;2井管;3弯管;4阀门;5集水总管;6闸门:7滤网,8过滤室,9淘砂孔;10水气分离器;11浮筒;12阀门:13真空计;14进水管;15真空计;16副水气分离器;17挡水板;18放水口;19真空泵;20电动机;2l冷却水管;22冷却水箱;23循环水泵;24离心水泵图l25 射流泵抽水设备工作简图(a)工作简图;(b)射流器构造 1一水泵;2一射流器;3一进水管;4一总管;5一井点管;6一循环水箱;7隔板;8一泄水口;9一真空表;10一压力表;11一喷嘴:12一喷管;13一接水管(a)(b) 2.轻型井点布置 1)平面布置b6m h 5m 单排图1-26 单排井点布置简图 (a)平面布置;(b)高程布置1一总管;2点管;3一抽水设备2)高程布置 图1-27 环形井点布置简图 (a)平面布置;(b)高程布置1一总管;2一井点管;3一抽水设备井管的埋置深度HA,可按下式计算(图1-27b):HAH1十h十iL (m) (1-22)式中 H1总管平台面至基坑底面的距离(m); h基坑中心线底面至降低后的地下水位线的距离,一般取0.51.0m; i水力坡度,根据实测:环形井点为110,单排线状井点为14; 图128 二级轻型井点1第一层井点管;2第二层井点管 3轻型井点计算 (1) 井型判定 图1-29 水井的分类(a)无压完整井;(b)无压非完整井(c)承压完整井(d)承压非完整井 (2)涌水量计算 无压完整涌水量 图1-30 环形井点涌水量计算简图 (a)无压完整井;(b)无压非完整井 (m3d)式中 K渗透系数(md),应由实验测定,表112仅供参考; H含水层厚度(m); S水位降低值(m); R抽水影响半径(m),取: x0环形井点的假想半径(m): F基坑周围井点管所包围的面积(m2)。 无压非完整井涌水量(m3d)有效深度有效深度H0值值 表表112S(S l)0.20.30.50.8H01.3(S l)1.5(S l)1.7(S l)1.85(S l)注:表中S为井管内水位降低深度;l为滤管长度。承压完整井涌水量承压完整井环形井点涌水量计算公式为式中 M承压含水层厚度(m);K、R、x0、S与公式(1-22)相同。 :(m3d)(3) 确定井点管数量与井距单井最大出水量单井的最大出水量q,主要取决于土的渗透系数、滤管的构造与尺寸,按下式确定:式中 d滤管直径(m); l滤管长度(m); K渗透系数(md)。(m3d)最少井数井点管的最少根数nmin,按下式计算:式中 1.1备用系数,考虑井点管堵塞等因素。其它符号同前。最大井距式中 L总管长度(m); (根)(m)确定井点管间距时,还应注意以下几点: (a)井距过小时,彼此干扰大,影响出水量,因此井距必须大于15倍管径。 (b)在渗透系数小的土中井距宜小些,否则水位降落时间过长。 (c)靠近河流处,井点宜适当加密。 (d)井距应能与总管上的接头间距相配合。 根据实际采用的井点管间距,最后确定所需的井点管根数。4轻型井点的施工 埋设井点的程序是:放线定位打井孔埋设井点管安装总管用弯联管将井点管与总管接通安装抽水设备。(录象) 图131 井点管的埋设(a) 冲孔;(b)埋管1一冲管,2一冲嘴;3一胶皮管;4一高压水泵,5一压力表;6一起重吊钩;7一井点管,8一滤管;9一填砂;10一粘土封口 (a) (b) (二)喷射井点(二)喷射井点 当当基基坑坑开开挖挖较较深深,降降水水深深度度要要求求较较大大时时,可可采采用用喷喷射射井井点点降降水水。其其降降水水深深度度可可达达820 m,可可用用于于渗渗透透系系数数为为0.150 md的砂土、淤泥质土层。的砂土、淤泥质土层。 喷射井点施工顺序是:安装水泵设备及泵的进出水管路;铺设进水总管和回水总管;沉设井点管(包括灌填砂滤料),接通进水总管后及时进行单根试抽、检验;全部井点管沉设完毕后,接通回水总管,全面试抽,检查整个降水系统的运转状况及降水效果。图1-35 喷射井点设备及平面布置简图 (a)喷射井点设备简图;(b)喷射扬水器原理图;(c)喷射井点平面布置 1喷射井管;2滤管;3进水总管;4排水总管;5一高压水泵;6集水池;7水泵;8内管;9外管;10喷嘴;11混合室;12扩散管;13压力表(c)(b)(a)(三)管井井点(三)管井井点 管井井点就是沿基坑每隔一定距离设置一个管井,每个管井单独用一台水泵不断抽水来降低地下水位。在土的渗透系数大(20200md)的土层中,宜采用管井井点。管井井点的设备主要是由管井、吸水管及水泵组成。 图1-36 管井井点 (a)钢管管井;(b)混凝土管管井1一沉砂管;2一钢筋焊接骨架;3滤网;4管身;5吸水管;6离心泵;7小砾石过滤层;8粘土封口;9混凝土实管;10无砂混凝土管;11潜水泵;12一出水管(a)(b)(四)深井井点(四)深井井点 当要求井内降水深度超过15m时,可在管井中使用深井泵抽水。这种井点称为深井井点(或深管井井点)。深井井点一般可降低水位3040m,有的甚至可达百米以上。(10 250m/d)常用的深井泵有两种类型。一种是深井潜水泵, 另一种是电动机安装在地面上,通过传动轴带动多级叶轮工作而排水。 (五五)电电渗渗井井点点电渗井点是在轻型或喷射井点中增设电极而形成,主要用于渗透系数小于0.1md的土层。 图137 电渗井点 1一井点管;2一电极;3直流电源五、降水对周围地面的影响及预防措施五、降水对周围地面的影响及预防措施 降低地下水位时,由于土颗粒流失或土体压缩固结,易引起周周地面沉降。由于土层的不均匀性和形成的水位呈漏斗状,地面沉降多为不均匀沉降,可能导致周围的建筑物倾斜、下沉、道路开裂或管线断裂。因此,井点降水时,必须采取相应措施,以防造成危害。 1回灌井点法 2设置止水帷幕法 3减缓降水速度法(a)(b)图138回灌井点布置示意图(a)降水与回灌井点;(b)加阻水支护结构的回灌井点1原有建筑物;2开挖基坑;3降水井点;4回灌井点;5原有地下水位线;6降灌井点间水位线;7降水后的水位线;8不回灌时的水位线;9基坑底第四节第四节 土方边坡与土壁支护土方边坡与土壁支护一、土方边坡一、土方边坡 (一) 边坡稳定条件及其影响因素 GCT图139边坡稳定条件示意(二)边坡坡度的确定 (a)(b)(c)(d)图140 土方边坡(a)直线边坡;(b)不同土层折线边坡;(c)不同深度折线边坡;(d)阶梯边坡 二、土壁支护二、土壁支护 (一)基槽支护结构 开挖较窄的沟槽,多用横撑式土壁支撑。 图139 横撑式支撑(a)间断式水平挡土板支撑 ;(b)垂直挡土板支撑 1水平挡土板,2立柱,3工具式横撑; 4垂直挡土板,5横楞木;6调节螺栓(a)(b) (二)基坑支护结构施工 1水泥土挡墙 图141 水泥土墙的一般构造(a)水泥土墙剖面;(b)连续式劲性水泥土墙平面;(c)格栅式平面布置1搅拌桩;2插筋;3面板;4H型钢;41(a)(c)(2)水泥土搅拌桩的施工 图142 搅拌水泥土墙施工流程(a)定位;(b)预埋下沉;(c)提升喷浆搅拌;(d)重复下沉搅拌 (e)重复提升搅拌;(f)成桩结束(3)特点与适用范围 水泥土墙按施工机具和方法不同,分为深层搅拌法、旋喷法和粉喷法。 2土钉墙与喷锚支护 (1)土钉墙支护 图1-43 土钉墙支护1土钉;2喷射混凝土面层;3垫板 3)土钉墙支护的施工 土钉墙的施工顺序为:按设计要求自上而下分段、分层开挖工作面,修整坡面埋设喷射混凝土厚度控制标志,喷射第一层混凝土钻孔,安设土钉钢筋注浆,安设连接件绑扎钢筋网,喷射第二层混凝土设置坡顶、坡面和坡脚的排水系统。若土质较好亦可采取如下顺序:开挖工作面、修坡绑扎钢筋网成孔安设土钉注浆、安设连接件喷射混凝土面层。(录象)(2)喷锚网支护 图145 喷锚支护 (a)喷锚支护结构;(b)土钉墙与喷锚网复合支护;(c)锚杆头与钢筋网和加强筋的连接 1喷射混凝土面层;2钢筋网层;3锚杆头;4锚杆(土钉);5加强筋;6锁定筋二根与锚杆双面焊接 3、排桩式挡墙 图146 挡土灌注桩支护形式(a)间隔式;(b)双排式;(c)连续式1挡土灌注桩;2连系梁(圈梁);3前排桩;4后排桩 4板桩挡墙 (1)型钢横挡板挡墙 图147 型钢桩横档板支护1一型钢桩; 2一横向挡土板;3木楔 (2)钢板桩挡墙图1-48 常用钢板桩截面形式(a)一字形钢板桩 ; (b)U形板桩(“拉森”板桩)(a) 5.板墙式挡墙 该类支护结构是指现浇或预制的地下连续墙。 6. 逆作拱墙支护 逆作拱墙支护,是在开挖过程中,随开挖深度分段,浇筑平面为闭合的圆形、椭圆形钢筋混凝土墙体 7.挡墙的支撑结构 挡墙的支撑结构按构造特点可分为自立式(悬臂式)、斜撑式、锚拉式、锚杆式、坑内支撑式等几种,其中坑内支撑又可分为水平支撑、桁架支撑及环梁支撑等。如图149 图149 挡土灌注桩支护形式(a)悬臂式;(b)斜撑式;(c)锚拉式;(d)锚杆式;(e)内撑式1挡墙;2围檩(连梁);3支撑;4斜撑;5拉锚;6锚杆;7先施工的基础;8支承柱(a)(b)(c)(d)H0.30.5H1(e)(1)悬臂支撑形式的挡墙 (2)斜撑式支撑 (3)拉锚式支撑 (4)土层锚杆(5)坑内支撑(录象)图150 土层锚杆构造图 1挡墙;2承托支架;3横梁;4台座;5承压垫板;6锚具;7钢拉杆;8水泥浆或砂浆锚固体;9非锚固段;10滑动面;D锚固体直径:d拉杆直径 910第五节第五节 土方工程的机械化施工土方工程的机械化施工一、场地平整施工一、场地平整施工 (一)推土机施工 推土机由拖拉机和推土铲刀组成,按行走的方式分履带式和轮胎式,按铲刀的操作方式分为索式和液压式,按铲刀的安装方式又分为固定式和回转式。 推土机是一种自行式的挖土、运土工具。适于运距在lOOm以内的平土或移挖作填,以3060m为最佳。一般可挖运一三类土。(录象) 推土机由拖拉机和推土铲刀组成,按行走的方式分履带式和轮胎式,按铲刀的操作方式分为索式和液压式,按铲刀的安装方式又分为固定式和回转式。 推土机是一种自行式的挖土、运土工具。适于运距在lOOm以内的平土或移挖作填,以3060m为最佳。一般可挖运一三类土。 (1)下坡推土法 (2)分批集中,一次推送法 (3) 沟槽推土法 (4) 并列推土法 图151 并列推土法图152 槽形推土法(5)斜角推土法 图153 并列推土法图154 斜角推送法作业(二)铲运机施工 (a)自形式铲运机图155 铲运机(b)拖式铲运机 1.铲运机的开行路线 (1)环形路线 (2)“8”字形路线 图156铲运机开行路线(a)、(b)环形路线;(c)大环形路线;(d)8字路线(c)(d) 2.铲运机铲土的施工方法 (1)下坡铲土 2)跨铲法 3)助铲法3挖土机施工 图157 助铲法示意图1铲运机;2推土机二、基坑开挖二、基坑开挖 (一)单斗挖土机施工 图1-58单斗挖土机工作简图(a)正铲挖土机;(b)反铲挖土机;(c)拉铲挖土机;(d)抓铲挖土机(1)开挖方式 图1-59 正铲挖土机开挖方式(a)正向挖土侧向卸土;(b)正向挖土后方卸土 l一正铲挖土机;2一自卸汽车 图1-60 正铲挖土机开挖基坑2反铲挖土机施工反铲挖土机的挖土特点是:“后退向下,强制切土”。其挖掘力比正铲小,适于开挖停机面以下的一三类土的基坑、基槽或管沟,每层经济合理的开挖深度为1.53.0m,对地下水位较高处也适用。 (1)沟端开挖:挖土机停在沟端,向后倒退挖土,汽车停在两旁装土 (2)沟侧开挖:挖土机沿沟一侧直线移动挖土 (录象)图161 反铲挖土机开挖方式(a)沟端开挖;(b)沟侧开挖1反铲挖土机;2自卸汽车;3弃土堆 3 3拉铲挖土机施工拉铲挖土机的挖土特点是:“后退向下,自重切土”。其挖土半径和挖土深度较大,能开挖停机面以下的一二类土。 拉铲挖土机的开挖方式,与反铲挖土机相似,也分为沟端开挖和沟侧开挖。(图) 图162 拉铲挖土机的工作尺寸 4抓铲挖土机施工抓铲挖土机的挖土特点是:“直上直下,自重切土”。能开挖一二类土,适于施工面狭窄而深的基坑、深槽、沉井等开挖,清理河泥等工程,最适于水下挖土,或装卸碎石、矿渣等松散材料。图1-63 抓铲挖土机工作示意(a)抓铲开挖柱基基坑;(b)抓铲斗工作示意 (a)(b)(二) 开挖施工要点1应根据地下水位、机械条件、进度要求等合理选用施工机械 。2土方开挖应绘制土方开挖图 。 3基底标高不一时,可采取先整片挖至一平均标高,然后再挖个别较深部位 。4基坑边角部位,机械开挖不到之处,应用少量人工配合清坡。 5挖掘机、运土汽车进出基坑的运输道路,应尽量利用基础一侧或地下车库坡道部位作为运输通道,以减少挖土量。 6软土地基或在雨期施工时,大型机械在坑下作业,需铺垫钢板或铺路基箱垫道。 7对某些面积不大、深度较大的基坑,应尽量不开或少开坡道。 8机械开挖应由深而浅,基底及边坡应预留一层200300mm厚土层用人工清底、修坡、找平 。9. 基坑挖好后,应紧接着进行下打钎验槽,尽量减少暴露时间 。(录象)第六节第六节 土方填筑与压实土方填筑与压实 一、土料选择与填筑方法一、土料选择与填筑方法碎石类土、砂土、爆破石渣及含水量符合压实要求的粘性土均可作为填方土料。冻土、淤泥、膨胀性土及有机物含量大于8的土、可溶性硫酸盐含量大于5的土均不能做填土。填方土料为粘性土时,应检验其含水量是否在控制范围内,含水量大的粘土不宜做填土用。 填方应尽量采用同类土填筑。当采用土料的透水性不同时,不得掺杂乱倒,应分层填筑,并将透水性较小的土料填在上层, 二、填土压实方法二、填土压实方法 (一)碾压法图1-65 碾压机械(d)自行式平碾;(6)拖式羊脚碾(二)夯实法 图1-66 蛙式打夯机1夯头;2夯架;3三角皮带;4托盘(三)振动压实法 图1-67 平板振动机三、影响填土压实的因素三、影响填土压实的因素 1压实功的影响 图1-68 土的密度与压实功的关系示意干密度( t/m3)消耗的压实功(kNm)2含水量的影响 手握成团落地开花 3铺土厚度的影响 200mm至350mm 四、填土压实的质量检验四、填土压实的质量检验d C max (gcm3) max土的最大干密度(gcm3); C要求的压实系数。
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号