资源预览内容
第1页 / 共73页
第2页 / 共73页
第3页 / 共73页
第4页 / 共73页
第5页 / 共73页
第6页 / 共73页
第7页 / 共73页
第8页 / 共73页
第9页 / 共73页
第10页 / 共73页
亲,该文档总共73页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
Digital Signal Processing 第十二章第十二章 离散小波变换离散小波变换 1上课课件Digital Signal Processing 121尺度和位移的离散化方法 q小波函数尺度离散化方法 幂级数基底a0的取值反映了尺度离散化程度 a0越接近1,离散化程度越低,越大于1,离散化程度越高 离散化程度高,从离散小波变换结果恢复(重建)分析信号的难度就越大,对母小波的要求越高 尺度参数离散化的常用幂级数基底a0=2 2上课课件Digital Signal Processing q小波函数位移离散化方法 位移 的离散化间隔 位移 的离散化间隔 3上课课件Digital Signal Processing q小波函数离散化 q离散小波变换 离散小波变换中的“离散”含义是指对尺度参数和位移参数进行离散化,并没有对分析信号和小波函数中的时间变量进行离散化 4上课课件Digital Signal Processing q尺度和位移离散化的规则 5上课课件Digital Signal Processing 122框架理论 q框架定义框架甚至是紧框架不一定能构成空间的的一个基。这意味着任一信号按基函数 展开时,其展开系数不一定具有唯一性 6上课课件Digital Signal Processing q对偶框架 q原函数的重建 7上课课件Digital Signal Processing q对偶框架的计算和原函数的重建 当 时当 时,紧框架 8上课课件Digital Signal Processing 当 时9上课课件Digital Signal Processing q小波框架 小波框架的定义 尺度、伸缩离散化构成的函数簇 小波框架的频域表示 10上课课件Digital Signal Processing 对偶小波框架和信号重建当 时当 时,紧框架 当 时11上课课件Digital Signal Processing q连续小波变换离散化参数和框架的关系 12上课课件Digital Signal Processing q小波框架的性质 满足框架条件的小波函数必然是允许小波 离散小波变换不具备时移不变特性 13上课课件Digital Signal Processing 离散小波的重建核方程 正交小波基:14上课课件Digital Signal Processing 123小波级数 q小波级数 离散化尺度的幂级数基底和位移离散化参数 的离散小波变换 定义 R小波 和 Riesz基 R小波与框架小波相比,具有更高的要求 15上课课件Digital Signal Processing 小波级数表达式 对偶R小波 计算小波级数的关键是寻找R小波和求解对偶小波 16上课课件Digital Signal Processing q小波分类 正交小波 是一个R小波 满足正交性条件 正交小波具有自对偶 小波级数系数 17上课课件Digital Signal Processing 半正交小波 是一个R小波 仅在尺度方向满足正交性条件 对偶小波 小波级数系数 18上课课件Digital Signal Processing 半正交小波 是一个R小波 尺度和位移方向均不满足正交性条件 对偶小波与原R小波在尺度和位移方向正交小波级数系数 19上课课件Digital Signal Processing q小波函数的重要特性 正交性 适合重建精确度和数据压缩 紧支撑性 减少截断误差影响信号重建精确度 线性相位性 小波函数具有奇对称或偶对称性减少相位失真 20上课课件Digital Signal Processing 124二进小波变换 尺度和位移都离散化的离散小波变换牺牲了位移不变性 二进小波变换只对尺度进行离散化处理位移仍连续变化 二进小波变换在信号的奇异性检测和图像处理方面有着广泛应用 21上课课件Digital Signal Processing q二进小波变换 定义 二进小波变换定义成卷积形式,CWT是内积形式 22上课课件Digital Signal Processing 二进小波的逆变换 二进小波构成框架小波时 A=B=1 A=B!=1 A!=B23上课课件Digital Signal Processing q二进小波的其它要求 二进小波以2为基底的尺度二进剖分之后,要求小波尺度函数 的频谱能够覆盖整个频率轴 小波函数的频域局域化指标 中心频率和带宽之比 24上课课件Digital Signal Processing 小波尺度伸缩后覆盖频谱情况 r=3/2,正好无缝对频率轴实现二进剖分 r3/2,设r=2 相邻二进小波之间的频带相互重叠 相邻二进小波之间的频带存在间隔 Mexican Hat小波 25上课课件Digital Signal Processing 125信号的多分辨率分析 框架理论给出了正交小波需要满足的条件 如果找到正交小波可将 空间的函数转换成 空间的数列 如何寻找频率特性好的正交小波? 多分辨率分析MRA不但为离散小波变换提供了快速算法,也为正交或双正交小波基的构造提供了一种通用方法 26上课课件Digital Signal Processing q信号的频域二进剖分 MRA在不同尺度(频域区间)对信号进行观察 大尺度(长时间窗)观察信号全貌或信号的缓变成份,或对信号进行粗略逼近 小尺度(短时间窗)观察信号局部或信号的快速变化成份 信号在频域的二进剖分(频率已归一化)27上课课件Digital Signal Processing 频域剖分过程就是不断滤波过程28上课课件Digital Signal Processing 频域剖分至第J级时,信号的分解形式Wj是各级分解的细节成份,由低通滤波得到 Vj是各级分解的近似成份,由高通滤波得到 Wj与WJ正交,频域互不重迭,频域的分解具有恒Q特性 29上课课件Digital Signal Processing q信号的多分辨率分析 多分辨率分析指满足下列条件的一个空间序列 一致单调性 逼近性 尺度伸缩规则 固定尺度下的平移不变性 正交基存在性 一个多分辨率分析对应一个尺度函数 30上课课件Digital Signal Processing V3V0V1V2多分辨率分析的空间示意图 31上课课件Digital Signal Processing 小波空间和小波函数 尺度空间之间相互包含不具有正交性 定义尺度空间的正交补空间 称 是小波空间 小波空间示意图V1W2W3V3V0V2W132上课课件Digital Signal Processing 正交基存在性: 小波空间的特性 正交性 逼近性 尺度伸缩规则 W1空间的一组正交基 一个多分辨率分析对应一个小波函数 33上课课件Digital Signal Processing q信号的多分辨率分析 对 空间按如下方式分解 计算信号x(t)在各空间下的投影 当分解尺度J趋向无穷大,信号全部分解在小波空间 小波级数分析时框架常数A=B=1时信号重建公式,与上式完全相同。MRA分析从空间二进剖分角度得到了信号的正交小波分解 34上课课件Digital Signal Processing q尺度函数和小波函数的性质 不同位移的两个尺度函数正交 小波函数的伸缩平移函数对尺度和平移参数正交 Wj和Vj空间正交 35上课课件Digital Signal Processing 126 Mallat算法和双通道滤波器组 qMRA分析中的双尺度方程 V0空间的一次分解V0空间正交基V1空间的尺度函数 在V0空间展开 W1空间的小波函数 在V0空间展开 36上课课件Digital Signal Processing MRA分析的双尺度方程 Vj空间的分解 MRA分析的表示方法MRA分析的表示方法37上课课件Digital Signal Processing q信号在MRA分解空间上的投影设信号在Vj-1空间的投影是:Vj空间的投影与Vj-1空间投影的关系38上课课件Digital Signal Processing Wj空间的投影与Vj-1空间投影的关系MRA投影过程 39上课课件Digital Signal Processing MRA分解的滤波器实现 Vj空间的投影与Vj-1空间投影关系的滤波器结构Wj空间的投影与Vj-1空间投影关系的滤波器结构40上课课件Digital Signal Processing MRA分析分解过程的完整滤波器实现结构 41上课课件Digital Signal Processing q信号空间分解的重建过程 设信号在空间Vj的投影序列是:设信号在空间Wj的投影序列是:设信号在空间Vj-1的投影序列是:空间Vj的投影和Wj空间投影重建Vj-1空间投影42上课课件Digital Signal Processing 空间Vj的投影和Wj空间投影重建Vj-1空间投影的滤波结构序列 经过 滤波输出 序列 经过 滤波输出 43上课课件Digital Signal Processing 空间Vj的投影和Wj空间投影重建Vj-1空间投影的完整滤波结构44上课课件Digital Signal Processing q信号空间分解的滤波器实现结构-Mallta算法 45上课课件Digital Signal Processing 127正交小波和小波滤波器 qMRA分析的表示方式 尺度函数的小波函数(适合CWT和二进WT)高通滤波器g(n)和低通滤波器h(n),适合离散正交小波变换通过滤波器组的精确重建理论寻找小波函数46上课课件Digital Signal Processing qMRA分析的一级空间分解和一级空间综合一级空间分解和一级空间综合的滤波器实现结构分解结果不作任何处理时,综合结果必须与输入完全.实际上相当于双通道滤波器的精确重建 问题47上课课件Digital Signal Processing qMRA分析滤波器组需要满足的条件双通道滤波器的精确重建条件MRA分析对滤波器组的要求(主要是各空间之间的正交性)滤波器的频率特性要求h(n)有好的低通特性,g(n)有好的高通特性h(n),g(n线性相位性等48上课课件Digital Signal Processing qMRA分析和精确重建的双通道滤波器组的解 Daubechies给出的CQF形式解 P=2时 49上课课件Digital Signal Processing q双正交小波 分析滤波器H(z)和G(z)满足正交性要求时,滤波器会失去对称性,不能满足线性相位特性 放弃H(z)和G(z) 正交性约束,换取线性相位特性 50上课课件Digital Signal Processing q由滤波器组参数推导小波函数和尺度函数 MRA分析与滤波器精确重建理论一致 通过滤波器的精确重建理论可计算重建滤波器组 通过滤波器组计算小波函数和尺度函数的意义 计算的小波函数可用于CWT或二进小波变换 通过对小波函数和尺度函数频谱分析可评价小波分析质量MRA分析时只需用到滤波器组的四个滤波器 51上课课件Digital Signal Processing 时域迭代法 并不是所有h(n)都能迭代收敛 52上课课件Digital Signal Processing 逐点计算法 53上课课件Digital Signal Processing 频域迭代法 54上课课件Digital Signal Processing 频域迭代法 反复回代得:55上课课件Digital Signal Processing 频域迭代的数值解 56上课课件Digital Signal Processing q小波采样的初始化 离散小波变换需要知道初始序列(或称为小波采样值) 最简单的方法是将奈氏采样序列 当作小波的初始序列 利用MRA对奈氏序列的小波分解后可精确重建奈氏序列的小波变换结果与小波采样结果之间存在偏差奈氏序列的小波变换结果处理后的重建结果同样还与期望之间产生偏差结论:离散小波变换最好对小波采样实施,否则会引入采样误差57上课课件Digital Signal Processing 128离散小波变换的简单应用 小波变换特别适合捕捉信号中的低能量的瞬变部分 典型应用 间断点(第I类和高阶导数不连续点)检测 信号趋势 自相似性 数据压缩 消噪 58上课课件Digital Signal Processing 例12-8-1matlab软件中包含一个第I类间断点的信号nearbrk.dat,试用DFT变换和离散小波变换检测该不连续点 59上课课件Digital Signal Processing q一维离散小波变换的消噪过程根据信号特性和分析要求选择小波函数确定分解层数 对采样信号进行离散小波分解 对小波分解最底层的低频系数和各层的高频系数进行硬阀值或软阀值处理 利用阀值处理后的最底层的低频系数和各层的高频系数进行小波重构 60上课课件Digital Signal Processing 例12-8-2设信号,其中是零均值、方差等于0.5的高斯白噪声,试用离散小波变换对其实施消噪处理。 THR,SORH,KEEPAPP,CRIT = ddencmp(IN1,IN2,X) XC,CXC,LXC,PERF0,PERFL2 = wdencmp(gbl,X,wname,N,THR,SORH,KEEPAPP) 61上课课件Digital Signal Processing 129信号的小波包分解 qMRA分析过程的空间剖分特点 V0W1W1V1V2W2W3V3W2W1V0W1V1V2W2W3V3小波空间的分辨率不够 信号落在小波空间中带宽很窄,则信号的特征可能会被大空间中的其它成份所掩盖 62上课课件Digital Signal Processing q理想的小波包时频空间分解 63上课课件Digital Signal Processing q最优小波基 针对每一类待分析信号,选定小波包,信号由不同的子空间组合构成。64上课课件Digital Signal Processing q正交小波包变换 第j级的第n个子空间 第j级的第n个子空间奇偶分解当n=0,j=165上课课件Digital Signal Processing 例,HARR小波包的空间分解 第0层只有一个子空间 第1层有2个子空间 第2层有4个子空间 66上课课件Digital Signal Processing q正交小波包变换的滤波器实现结构 小波包的空间分解的滤波器实现结构 67上课课件Digital Signal Processing 小波包的空间综合的滤波器实现结构 68上课课件Digital Signal Processing 例12-9-1已知信号由幅值等于1,频率分别为0.2 KHz、0.6 KHz、1.0 KHz、1.4 KHz、1.8 KHz、2.2 KHz、2.6 KHz、3.0 KHz的正弦波构成,采样频率等于6.4 KHz,采样长度等于0.08秒,试用db20小波对其进行三层小波包分解,绘出第三层各子空间系数恢复出的信号波形,以及对应的幅频特性,并说明第三层各子空间对应的频谱区间 69上课课件Digital Signal Processing 例12-9-1小波包分解第三层的8个子空间系数的恢复信号及其频谱 70上课课件Digital Signal Processing 小波包分解结果表明小波包频谱划分并不是按子空间序号顺序递增第三层子空间d0至d7的频谱分布为: 0,1/8,1/8,2/8,3/8,4/8,2/8,3/8, 7/8,8/8,6/8,7/8,4/8,5/8,5/8,6/8第三层子空间对应的频谱剖分排列为:01327645 小波包分解的频谱特性71上课课件Digital Signal Processing 小波包消噪和压缩算法过程据信号特性和分析要求选择合适的小波包函数确定分解层数;对采样信号进行小波包分解;根据给定的熵标准,计算最优树采用一定的算法,对最优树中的每个小波系数进行阀值处理应用阀值处理后最优树中的每个小波系数重构信号,得到消噪结果处理对阀值处理后最优树中的每个小波系数进行量化编码,得到信号的压缩结果72上课课件Digital Signal Processing 例12-9-2采用相同的小波函数、分解层数,以及相同的阀值算法,应用小波包变换对例12-8-2的信号进行消噪处理,并比较两种方法的消噪结果 XD,TREED,PERF0,PERFL2 = wpdencmp(X,SORH,N,wname,CRIT,PAR,KEEPAPP) 73上课课件
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号