资源预览内容
第1页 / 共24页
第2页 / 共24页
第3页 / 共24页
第4页 / 共24页
第5页 / 共24页
第6页 / 共24页
第7页 / 共24页
第8页 / 共24页
第9页 / 共24页
第10页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
要点梳理要点梳理1.1.根式根式(1 1)根式的概念)根式的概念 如果一个数的如果一个数的n n次方等于次方等于a a(n n1 1且且n nN N* *),那么这),那么这 个数叫做个数叫做a a的的n n次方根次方根. .也就是,若也就是,若x xn n= =a a,则,则x x叫做叫做 _,_,其中其中n n1 1且且n nN N* *. .式子式子 叫做叫做_,_, 这里这里n n叫做叫做_,a a叫做叫做_. _. 2.4 2.4 指数与指数函数指数与指数函数 a a的的n n次方根次方根根式根式根指数根指数被开方数被开方数基础知识基础知识 自主学习自主学习1(2 2)根式的性质)根式的性质 当当n n为奇数时为奇数时, ,正数的正数的n n次方根是一个正数,负数的次方根是一个正数,负数的 n n次方根是一个负数,这时,次方根是一个负数,这时,a a的的n n次方根用符号次方根用符号_ 表示表示. . 当当n n为偶数时,正数的为偶数时,正数的n n次方根有两个,它们互为次方根有两个,它们互为 相反数相反数, ,这时,正数的正的这时,正数的正的n n次方根用符号次方根用符号_表示表示, , 负的负的n n次方根用符号次方根用符号_表示表示. .正负两个正负两个n n次方根次方根 可以合写为可以合写为_(a a0 0). . =_. =_. a a2当当n n为奇数时,为奇数时, =_;=_;当当n n为偶数时,为偶数时, =_.=_.负数没有偶次方根负数没有偶次方根. . 2.2.有理数指数幂有理数指数幂(1)(1)幂的有关概念幂的有关概念正整数指数幂:正整数指数幂: (n nN N* *););零指数幂:零指数幂:a a0 0=_=_(a a00););负整数指数幂:负整数指数幂:a a- -p p=_=_(a a00,p pN N* *););a a1 13正分数指数幂:正分数指数幂: =_=_(a a00,m m、n nN N* *, 且且n n11););负分数指数幂:负分数指数幂: = = (= = (a a0,0,m m、n n N N* *, ,且且n n1).1).00的正分数指数幂等于的正分数指数幂等于_,0 0的负分数指数幂的负分数指数幂 _._.(2 2)有理数指数幂的性质)有理数指数幂的性质 a ar ra as s= = _(_(a a0,0,r r、s sQ Q);); ( (a ar r) )s s= = _(_(a a0,0,r r、s sQ Q);); ( (abab) )r r= = _(_(a a0,0,b b0,0,r rQ Q). ). a ar r+ +s sa arsrsa ar rb br r0 0没有意义没有意义43.3.指数函数的图象与性质指数函数的图象与性质 y y= =a ax xa a1100a a100时时,_;,_;x x000时时,_;,_;x x011y y1100y y1100y y11减函数减函数增函数增函数5练习:练习:1 1、下列等式、下列等式 中一定成立的有中一定成立的有 ( ) A.0A.0个个 B.1B.1个个 C.2C.2个个 D.3D.3个个2 2、计算下列各式、计算下列各式A题型分类题型分类 深度剖析深度剖析64 4、右图是指数函数(、右图是指数函数(1 1)y y= =a ax x,(2 2)y y= =b bx x, ,(3 3)y y= =c cx x, ,(4 4)y y= =d dx x 的图象的图象, ,则则a a,b b,c c,d d与与1 1的大的大 小关系是小关系是 ( )( ) A.ab1cd C.1abcd A.ab1cd C.1abcd B.ba1dc D.ab1dc B.ba1dc D.ab1d1100a a100时时,_;,_;x x000时时,_;,_;x x011y y1100y y1100y y100且且a a11 6 6、比较大小:、比较大小:C1 1、求函数、求函数定义域与值域定义域与值域一、指数函数定义域与值域一、指数函数定义域与值域9分离参数化归利用函数的有界性逆求10;.例例2、设、设a0,且且a1,1,如果函数如果函数y=a2x+2ax-1在在-1,1的最大值为的最大值为14,求,求a的值。的值。提示提示11二、二、 指数函数的性质指数函数的性质【例例3 3】(12(12分分) )设函数设函数f f( (x x)= )= 为奇函数为奇函数. . 求:求:(1 1)实数)实数a a的值;的值;(2 2)用定义法判断)用定义法判断f f(x x)在其定义域上的单调性)在其定义域上的单调性. . 由由f f(- -x x)=-=-f f(x x)恒成立可解得)恒成立可解得a a的值的值; ; 第第(2)(2)问按定义法判断单调性的步骤进行求解即可问按定义法判断单调性的步骤进行求解即可. .思维启迪思维启迪12解解 (1)(1)方法一方法一 依题意,函数依题意,函数f f(x x)的定义域为)的定义域为R R, f f(x x)是奇函数,)是奇函数,f f(- -x x)=-=-f f(x x),), 2 2分分2(2(a a-1)(2-1)(2x x+1)=0+1)=0,a a=1. 6=1. 6分分方法二方法二 f f( (x x) )是是R R上的奇函数,上的奇函数,f f(0)=0(0)=0,即,即 a a=1. 6=1. 6分分(2 2)由)由(1)(1)知,知, 设设x x1 1 )f f( (x x1 1),),f f( (x x) )在在R R上是增函数上是增函数. 12. 12分分 (1)(1)若若f f( (x x) )在在x x=0=0处有定义处有定义, ,且且f f( (x x) )是奇函是奇函数数, ,则有则有f f(0)=0,(0)=0,即可求得即可求得a a=1.=1.(2 2)由)由x x1 1 x x2 2推得推得 实质上应用了函数实质上应用了函数 f f(x x)=2=2x x在在R R上是单调递增这一性质上是单调递增这一性质. . 探究提高探究提高14知能迁移知能迁移2 2 设设 是定义在是定义在R R上的函数上的函数. .(1 1)f f(x x)可能是奇函数吗?)可能是奇函数吗?(2 2)若)若f f(x x)是偶函数,试研究其单调性)是偶函数,试研究其单调性. . 15三、三、 指数函数的图象及应用指数函数的图象及应用【例例3 3】已知函数已知函数 (1)(1)作出图象;作出图象; (2)(2)由图象指出其单调区间;由图象指出其单调区间; (3)(3)由图象指出当由图象指出当x x取什么值时函数有最值取什么值时函数有最值. . 思维启迪思维启迪 化去绝对值符号化去绝对值符号将函数写成分段函数的形式将函数写成分段函数的形式作图象作图象写出单调区间写出单调区间写出写出x x的取值的取值16解解 (1 1)由已知可得)由已知可得其图象由两部分组成:其图象由两部分组成:一部分是:一部分是: 另一部分是:另一部分是:y y=3=3x x ( (x x0) 0) y y=3=3x x+1+1 ( (x x-1). 0,0,且且a a 1) 1)的图象有两个公共点的图象有两个公共点, ,则则a a的取值范围是的取值范围是_._. 解析解析 数形结合数形结合. . 当当a a11时,如图时,如图, ,只有一个公共点,不符合题意只有一个公共点,不符合题意. . 当当00a a11时,如图时,如图, ,由图象知由图象知0202a a1,1,191.1.单调性是指数函数的重要性质,特别是函数图象的单调性是指数函数的重要性质,特别是函数图象的 无限伸展性,无限伸展性,x x轴是函数图象的渐近线轴是函数图象的渐近线. .当当00a a111,x x-时时, ,y y0;0;当当a a11时,时, a a的值越大,图象越靠近的值越大,图象越靠近y y轴,递增的速度越快;轴,递增的速度越快; 当当00a a10,0,a a1)1)的图象和性质与的图象和性质与a a的取值的取值 有关,要特别注意区分有关,要特别注意区分a a11与与00a a11,1,b b0 0 C.0a0 B. B.a a1,1,b b0 0 D.0a1,b0f(x)=a-|x| (a0且且a1),a1),若若f(2)=4f(2)=4,则,则f(-2) f(-2) 与与f(1)f(1)的大小关系是的大小关系是_._. 5. 5.已知已知 函数函数f(x)=ax,f(x)=ax,若实数若实数 m m、n n满足满足f(m)f(n),f(m)f(n),则则m m、n n的大小关系为的大小关系为_._. 6 6、若函数、若函数y=a2x+2ax-1(a0y=a2x+2ax-1(a0且且a1)a1)在在x-1,1x-1,1上的上的 最大值为最大值为1414,求,求a a的值的值. . 237.7.若函数若函数y y= =a a2 2x x+2+2a ax x-1(-1(a a00且且a a1)1)在在x x-1,1-1,1上的上的 最大值为最大值为1414,求,求a a的值的值. . 8.8.已知函数已知函数 满足满足 (1 1)求常数)求常数c c的值;的值;(2 2)解不等式)解不等式 24
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号