资源预览内容
第1页 / 共78页
第2页 / 共78页
第3页 / 共78页
第4页 / 共78页
第5页 / 共78页
第6页 / 共78页
第7页 / 共78页
第8页 / 共78页
第9页 / 共78页
第10页 / 共78页
亲,该文档总共78页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第第1010章章 含有耦合电感的电路含有耦合电感的电路首首 页页本章重点本章重点互感互感10.1含有耦合电感电路的计算含有耦合电感电路的计算10.2耦合电感的功率耦合电感的功率10.3变压器原理变压器原理10.4理想变压器理想变压器10.5l重点重点 1. 1.互感和互感电压互感和互感电压 2. 2.有互感电路的计算有互感电路的计算 3. 3.变压器和理想变压器原理变压器和理想变压器原理返 回i (t)+-u (t)电感器电感器把金属导线绕在一骨架上构把金属导线绕在一骨架上构成一实际电感器,当电流通成一实际电感器,当电流通过线圈时,将产生磁通,是过线圈时,将产生磁通,是一种储存磁能的部件一种储存磁能的部件 (t)N (t)下 页上 页返 回回顾线性定常电感元件线性定常电感元件根据电磁感应定根据电磁感应定律与楞次定律律与楞次定律10.1 10.1 互感互感 耦合电感元件属于耦合电感元件属于多端元件多端元件,在实际电路中,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。的电路问题的分析方法是非常必要的。下 页上 页返 回1. 1. 互感互感线线圈圈1中中通通入入电电流流i1时时,在在线线圈圈1中中产产生生磁磁通通,同同时时,有有部部分分磁磁通通穿穿过过临临近近线线圈圈2,这这部部分分磁磁通通称称为互感磁通。两线圈间有磁的耦合。为互感磁通。两线圈间有磁的耦合。下 页上 页 21+u11+u21i111N1N2定义定义 :磁链磁链 , =N返 回空心线圈空心线圈, 与与i 成正比。当只有一个线圈时:成正比。当只有一个线圈时: 当两个线圈都有电流时,每一线圈的磁链为当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和:自磁链与互磁链的代数和: M值与线圈的形状、几何位置、空间值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,满足媒质有关,与线圈中的电流无关,满足M12=M21 L总为正值,总为正值,M 值有正有负。值有正有负。下 页上 页注意 返 回2. 2. 耦合系数耦合系数 用耦合系数用耦合系数k 表示两个线表示两个线圈磁耦合的紧密程度。圈磁耦合的紧密程度。k=1 称全耦合称全耦合: : 漏磁漏磁 s1 =s2=011= 21 ,22 =12满足:满足: 耦合系数耦合系数k与线圈的结构、相互几何位置、与线圈的结构、相互几何位置、空间磁介质有关。空间磁介质有关。下 页上 页注意 返 回互感现象互感现象利用利用变压器:信号、功率传递变压器:信号、功率传递避免避免干扰干扰克服:合理布置线圈相互位置或增加屏蔽减少互感克服:合理布置线圈相互位置或增加屏蔽减少互感 作用。作用。下 页上 页电抗器电抗器返 回下 页上 页电抗器磁场电抗器磁场铁磁材料屏蔽磁场铁磁材料屏蔽磁场返 回当当i1为为时时变变电电流流时时,磁磁通通也也将将随随时时间间变变化化,从从而在线圈两端产生感应电压。而在线圈两端产生感应电压。当当i1、u11、u21方方向向与与 符符合合右右手手螺螺旋旋时时,根根据电磁感应定律和楞次定律:据电磁感应定律和楞次定律:自感电压自感电压互感电压互感电压3. 3. 耦合电感上的电压、电流关系耦合电感上的电压、电流关系下 页上 页 当两个线圈同时通以电流时,每个线圈两当两个线圈同时通以电流时,每个线圈两端的电压均包含自感电压和互感电压。端的电压均包含自感电压和互感电压。返 回 21+u11+u21i111N1N2i1:施感电流施感电流在正弦交流电路中,其相量形式的在正弦交流电路中,其相量形式的方程为:方程为:下 页上 页返 回注意 两线圈的自两线圈的自磁链和互磁链相助,磁链和互磁链相助,互感电压取正,否互感电压取正,否则取负。则取负。 表明互感电表明互感电压的正、负:压的正、负: (1)与电流的参与电流的参考方向有关;考方向有关; (2)与线圈的相与线圈的相对位置和绕向有关。对位置和绕向有关。4.4.互感线圈的同名端互感线圈的同名端对对自自感感电电压压,当当u, i 取取关关联联参参考考方方向向,u、i与与 符合右螺旋定则,其表达式为:符合右螺旋定则,其表达式为: 上上式式说说明明,对对于于自自感感电电压压由由于于电电压压电电流流为为同同一一线线圈圈上上的的,只只要要参参考考方方向向确确定定了了,其其数数学学描描述述便可容易地写出,可不用考虑线圈绕向。便可容易地写出,可不用考虑线圈绕向。下 页上 页i1u11返 回对对互互感感电电压压,因因产产生生该该电电压压的的电电流流在在另另一一线线圈圈上上,因因此此,要要确确定定其其符符号号,就就必必须须知知道道两两个个线线圈圈的的绕绕向向。这这在在电电路路分分析析中中显显得得很很不不方方便便。为为解解决决这个问题引入同名端的概念。这个问题引入同名端的概念。下 页上 页 当两个电流分别从两个线圈的对应端子同当两个电流分别从两个线圈的对应端子同时流入或流出,若所产生的磁通相互加强时,则时流入或流出,若所产生的磁通相互加强时,则这两个对应端子称为两互感线圈的同名端。这两个对应端子称为两互感线圈的同名端。 同名端同名端返 回*i1i2i3线圈的同名端必须线圈的同名端必须两两两两确定。确定。下 页上 页注意 +u11+u2111 0N1N2+u31N3 s返 回确定同名端的方法:确定同名端的方法:(1)当当两两个个线线圈圈中中电电流流同同时时由由同同名名端端流流入入( (或或流流出出) )时时,两个电流产生的磁场相互增强。两个电流产生的磁场相互增强。i1122*112233* 例例(2)当当随随时时间间增增大大的的时时变变电电流流从从一一线线圈圈的的一一端端流流入入时,将会引起另一线圈相应同名端的电位升高。时,将会引起另一线圈相应同名端的电位升高。下 页上 页返 回+V 同名端的实验测定:同名端的实验测定:i1122*电压表正偏。电压表正偏。如图电路,当闭合开关如图电路,当闭合开关 S 时,时,i 增加,增加, 当当两两组组线线圈圈装装在在黑黑盒盒里里,只只引引出出四四个个端端线线组组,要要确确定定其其同同名名端端,就就可可以以利利用用上上面面的的结结论论来加以判断。来加以判断。下 页上 页RS+-i返 回当断开当断开S时,如何判定时,如何判定?由同名端及由同名端及u、i参考方向确定互感线圈的特性方程参考方向确定互感线圈的特性方程 有了同名端,表示两个线圈相互作用时,就有了同名端,表示两个线圈相互作用时,就不需考虑实际绕向,而只画出同名端及不需考虑实际绕向,而只画出同名端及u、i参考参考方向即可。方向即可。下 页上 页i1*u21+Mi1*u21+M返 回例例1写写出出图图示示电电路路电电压压、电电流流关关系系式式下 页上 页i1*L1L2+_u1+_u2i2Mi1*L1L2+_u1+_u2i2Mi1*L1L2+_u1+_u2i2Mi1*L1L2+_u1+_u2i2M返 回例例221010i1/At/s解解下 页上 页MR1R2i1*L1L2+_u+_u2返 回小结:小结:有有三三个个线线圈圈,相相互互两两两两之之间间都都有有磁磁耦耦合合,每每对对耦耦合合线线圈圈的的同同名名端端必必须须用用不不同同的的符符号号来标记。来标记。(1) 一个线圈可以不止和一个线圈有磁耦合关系;一个线圈可以不止和一个线圈有磁耦合关系;(2) 互感电压的符号取决于:互感电压的符号取决于:同名端;同名端;参考方向参考方向.下 页上 页返 回10.2 10.2 含有耦合电感电路的计算含有耦合电感电路的计算1. 1. 耦合电感的串联耦合电感的串联顺接串联顺接串联去耦等效电路去耦等效电路下 页上 页iM*u2+R1R2L1L2u1+u+iRLu+返 回反接串联反接串联下 页上 页iM*u2+R1R2L1L2u1+u+iRLu+注意 返 回顺接一次,反接一次,就可以测出互感:顺接一次,反接一次,就可以测出互感:全耦合时全耦合时 当当 L1=L2 时时 , M=L4M 顺接顺接0 反接反接L=互感的测量方法:互感的测量方法:下 页上 页返 回在正弦激励下:在正弦激励下:* 下 页上 页j L1j L2j M+R1+返 回R2 * 相量图:相量图:(a) (a) 顺接顺接(b) (b) 反接反接下 页上 页j L1j L2j M+R1+返 回R2同侧并联同侧并联i = i1 +i2 消去消去i1、i2,解得解得u, i 的关系:的关系:2. 2. 耦合电感的并联耦合电感的并联下 页上 页*Mi2i1L1L2ui+返 回如全耦合:如全耦合:L1L2=M2当当 L1L2 ,Leq=0 ( (短路短路) )当当 L1=L2 =L , Leq=L ( (相当于导线加粗,电感不变相当于导线加粗,电感不变) ) 等效电感:等效电感:去耦等效电路去耦等效电路下 页上 页Lequi+返 回 异侧并联异侧并联i = i1 +i2 消去消去i1、i2,解得解得u, i 的关系:的关系:等效电感:等效电感:下 页上 页*Mi2i1L1L2ui+返 回3.3.耦合电感的耦合电感的T T型等效型等效同名端为共端的同名端为共端的T型去耦等效型去耦等效下 页上 页*jL1123jL2j M312j(L1-M)j(L2-M)jM返 回异名端为共端的异名端为共端的T型去耦等效型去耦等效下 页上 页*jL1123jL2j M12j(L1+M)j(L2+M)-jM3返 回下 页上 页*Mi2i1L1L2ui+(L1M)M(L2M)i2i1ui+* *Mi2i1L1L2u1+u2+(L1M)M(L2M)* *Mi2i1L1L2u1+u2+返 回4. 4. 受控源等效电路受控源等效电路下 页上 页* *Mi2i1L1L2u1+u2+j L1j L2+返 回例例Lab=5HLab=6H解解下 页上 页M=3H6H2H0.5H4Hab9H7H-3H2H0.5HabM=4H6H2H3H5HabM=1H4H3H2H1Hab3H返 回复习复习1.互感互感 21+u11+u21i111N1N2M互感系数;互感系数; M值与线圈的形状、几何位置、空值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关。间媒质有关,与线圈中的电流无关。L自感系数;自感系数;同名端同名端互感电压的符号取决于:互感电压的符号取决于: 同名端;参考方向同名端;参考方向复习复习2. 2. 耦合电感的串联耦合电感的串联顺接串联顺接串联iM*u2+R1R2L1L2u1+u+iRLu+反接串联反接串联iM*u2+R1R2L1L2u1+u+复习复习3.3.耦合电感的耦合电感的T T型等效型等效同名端为共端的同名端为共端的T型去耦等效型去耦等效*jL1123jL2j M12j(L1-M)j(L2-M)jM异名端为共端的异名端为共端的T型去耦等效型去耦等效复习复习*jL1123jL2j M12j(L1+M)j(L2+M)-jM4. 4. 受控源等效电路受控源等效电路下 页上 页* *Mi2i1L1L2u1+u2+j L1j L2+返 回复习复习5. 5. 有互感电路的计算有互感电路的计算在正弦稳态情况下,有互感的电路的计算仍应用在正弦稳态情况下,有互感的电路的计算仍应用前面介绍的相量分析方法。前面介绍的相量分析方法。注意互感线圈上的电压除自感电压外,还应包含注意互感线圈上的电压除自感电压外,还应包含互感电压。互感电压。一般采用支路法和回路法计算。一般采用支路法和回路法计算。下 页上 页例例1列写电路的回路列写电路的回路电流方程。电流方程。MuS+CL1L2R1R2*+ki1i1返 回-MuS+CL1+ML2+MR1R2+ki1i1解解MuS+CL1L2R1R2*+ki1i1213例例2 2求图示电路的开路电压。求图示电路的开路电压。解解1 1下 页上 页M12+_+_*M23M31L1L2L3R1返 回作出去耦等效电路,作出去耦等效电路,( (一对一对消一对一对消):):解解2 2下 页上 页M12*M23M31L1L2L3*M23M31L1M12L2M12L3+M12M31L1M12 +M23L2M12 M23L3+M12 M23L1M12 +M23 M13 L2M12M23 +M13 L3+M12M23 M13 返 回下 页上 页L1M12 +M23 M13 L2M12M23 +M13 L3+M12M23 M13 +_+_R1返 回例例3 3要使要使 i=0,问电源的角频率为多少?,问电源的角频率为多少?解解下 页上 页ZRCL1L2MiuS+L1 L2C R + MZ*L1M L2MMC R + Z返 回例例4图示互感电路已处于稳态,图示互感电路已处于稳态,t = 0 时开关打开,时开关打开,求求t 0+时开路电压时开路电压u2(t)。下 页上 页*0.2H0.4HM=0.1H+1040Vu2+10510解解副边开路,对原边回路无影响,开路电压副边开路,对原边回路无影响,开路电压u2(t)中只有互感电压。中只有互感电压。i返 回即先求电流即先求电流i(t)的零输入响应。的零输入响应。下 页上 页*0.2H0.4HM=0.1H10u2+10返 回10.3 10.3 耦合电感的功率耦合电感的功率 当耦合电感中的施感电流变化时,将出现变化当耦合电感中的施感电流变化时,将出现变化的磁场,从而产生电场(互感电压),耦合电感通的磁场,从而产生电场(互感电压),耦合电感通过变化的电磁场进行电磁能的转换和传输,电磁能过变化的电磁场进行电磁能的转换和传输,电磁能从耦合电感一边传输到另一边。从耦合电感一边传输到另一边。 下 页上 页* *j L1j L2j M+R1R2例例求图示电路的复功率求图示电路的复功率 返 回+* *j L1j L2j M+R1R2下 页上 页返 回下 页上 页线圈线圈1中中互感互感电压耦合的复功率耦合的复功率线圈线圈2中中互感互感电压耦合的复功率耦合的复功率注意 两个互感电压耦合的复功率为虚部同号,而实部异号,这两个互感电压耦合的复功率为虚部同号,而实部异号,这一特点是耦合电感本身的电磁特性所决定的一特点是耦合电感本身的电磁特性所决定的;耦合功率中的有功功率相互异号,表明有功功率从一个端口耦合功率中的有功功率相互异号,表明有功功率从一个端口进入,必从另一端口输出,这是互感进入,必从另一端口输出,这是互感M非耗能特性的体现。非耗能特性的体现。返 回耦合功率中的无功功率同号,表明两个互感电压耦合功率中耦合功率中的无功功率同号,表明两个互感电压耦合功率中的无功功率对两个耦合线圈的影响、性质是相同的,即,当的无功功率对两个耦合线圈的影响、性质是相同的,即,当M起同向耦合作用时,它的储能特性与电感相同,将使耦合起同向耦合作用时,它的储能特性与电感相同,将使耦合电感中的磁能增加;当电感中的磁能增加;当M起反向耦合作用时,它的储能特性起反向耦合作用时,它的储能特性与电容相同,将使耦合电感的储能减少。与电容相同,将使耦合电感的储能减少。10.4 10.4 变压器原理变压器原理 变压器由两个具有互感的线圈构成,一个线圈变压器由两个具有互感的线圈构成,一个线圈接向电源,另一线圈接向负载,变压器是利用互感接向电源,另一线圈接向负载,变压器是利用互感来实现从一个电路向另一个电路传输能量或信号的来实现从一个电路向另一个电路传输能量或信号的器件。当变压器线圈的芯子为非铁磁材料时,称空器件。当变压器线圈的芯子为非铁磁材料时,称空心变压器。心变压器。1.1.变压器电路(工作在线性段)变压器电路(工作在线性段)原边回路原边回路副边回路副边回路下 页上 页* *j L1j L2j M+R1R2Z=R+jX返 回2. 2. 分析方法分析方法方程法分析方程法分析令令 Z11=R1+j L1, Z22=(R2+R)+j( L2+X)回路方程:回路方程:下 页上 页* *jL1jL2j M+R1R2Z=R+jX返 回等效电路法分析等效电路法分析+Z11+Z22原边原边等效等效电路电路副边副边等效等效电路电路根据以上表示式得等效电路。根据以上表示式得等效电路。 利用戴维宁定理可以利用戴维宁定理可以求得变压器副边的等效电路求得变压器副边的等效电路 。注意 副边对原边的引入阻抗。副边对原边的引入阻抗。引入电阻。恒为正引入电阻。恒为正 , , 表示副边回路吸收表示副边回路吸收的功率是靠原边供给的。的功率是靠原边供给的。引入电抗。引入电抗。负号反映了引入电抗与副边负号反映了引入电抗与副边电抗的性质相反。电抗的性质相反。下 页上 页+Z11原边等效电路原边等效电路返 回引引入入阻阻抗抗反反映映了了副副边边回回路路对对原原边边回回路路的的影影响响。原原副副边边虽虽然然没没有有电电的的联联接接,但但互互感感的的作作用用使使副副边边产产生电流,这个电流又影响原边电流电压。生电流,这个电流又影响原边电流电压。能量分析能量分析电源发出有功电源发出有功 P= I12(R1+Rl)I12R1 消耗在原边;消耗在原边;I12Rl 消耗在副边,由互感传输消耗在副边,由互感传输证证明明下 页上 页返 回原边对副边的引入阻抗。原边对副边的引入阻抗。副边开路时,原边电流在副边副边开路时,原边电流在副边产生的互感电压。产生的互感电压。副边等效电路副边等效电路+Z22去耦等效法分析去耦等效法分析对含互感的电路进行去耦等效,再对含互感的电路进行去耦等效,再进行分析。进行分析。Rl已知已知 US=20 V , 原边引入阻抗原边引入阻抗 Zl=10j10.求求: : ZX 并求负载获得的有功功率并求负载获得的有功功率. .负载获得功率:负载获得功率:实际是最佳匹配:实际是最佳匹配:例例1解解下 页上 页*j10j10j2+10ZX10+j10Zl+返 回 L1=3.6H , L2=0.06H , M=0.465H , R1=20 , R2=0.08 , RL=42 , =314rad/s,应用原边应用原边等效电路等效电路例例2解解1下 页上 页*j L1j L2j M+R1R2RL+Z11返 回下 页上 页+Z11返 回*j L1j L2j M+R1R2RL求求 还可以应用副边等效电路还可以应用副边等效电路下 页上 页+Z22返 回例例3全耦合电路如图,求初级端全耦合电路如图,求初级端ab的等效阻抗。的等效阻抗。解解1解解2画出去耦等效电路画出去耦等效电路下 页上 页*L1aM+bL2L1M L2M+ Mab返 回+Z11例例4L1=L2=0.1mH , M=0.02mH , R1=10 , C1=C2=0.01F 问问:R2=?能吸收最大功率能吸收最大功率, , 求最大功率。求最大功率。解解1 =106rad/s,下 页上 页j L1j L2j MR1R2*+1/j C21/j C1返 回应用原边等效电路应用原边等效电路当当R2=40 时吸收最大功率时吸收最大功率下 页上 页10+返 回解解2应用副边等效电路应用副边等效电路当当时吸收最大功率时吸收最大功率下 页上 页R2+返 回解解例例5* 问问Z为何值时其上获得最为何值时其上获得最大功率,求出最大功率。大功率,求出最大功率。判定互感线圈的同名端判定互感线圈的同名端下 页上 页uS(t)Z100 CL1L2MjL1 R + MZ*jL2 1/jC 返 回作去耦等效电路作去耦等效电路下 页上 页+ Zj100j20j20100j(L-20)jL1 R + MZ*jL2 1/jC + Zj100100j(L-20)返 回下 页上 页uoc+ j100100j(L-20)j100100j(L-20)Zeq返 回复习* *j L1j L2j M+R1R2Z=R+jX原边回路原边回路副边回路副边回路Z11=R1+j L1, Z22=(R2+R)+j( L2+X)+Z11+Z2210.5 10.5 理想变压器理想变压器1.1.理想变压器的三个理想化条件理想变压器的三个理想化条件 理想变压器是实际变压器的理想化模型,是对互理想变压器是实际变压器的理想化模型,是对互感元件的理想科学抽象,是极限情况下的耦合电感。感元件的理想科学抽象,是极限情况下的耦合电感。全耦合全耦合无损耗无损耗线圈导线无电阻,做芯子的铁磁材线圈导线无电阻,做芯子的铁磁材料的磁导率无限大。料的磁导率无限大。参数无限大参数无限大下 页上 页返 回 以上三个条件在工程实际中不可能满足,以上三个条件在工程实际中不可能满足,但在一些实际工程概算中,在误差允许的范围内,但在一些实际工程概算中,在误差允许的范围内,把实际变压器当理想变压器对待,可使计算过程简把实际变压器当理想变压器对待,可使计算过程简化。化。下 页上 页注意 2.2.理想变压器的主要性能理想变压器的主要性能i1122N1N2变压关系变压关系返 回若若下 页上 页理想变压器模型理想变压器模型*n:1+_u1+_u2注意 *n:1+_u1+_u2返 回*+_u1+_u2i1L1L2i2M理想变压器模型理想变压器模型*n:1+_u1+_u2i1i2变流关系变流关系考虑理想化条件:考虑理想化条件:0下 页上 页返 回若若i1、i2一个从同名端流入,一个从同名一个从同名端流入,一个从同名端流出,则有:端流出,则有:下 页上 页注意 *n:1+_u1+_u2i1i2变阻抗关系变阻抗关系注意 理想变压器的阻抗变换只改变阻抗的理想变压器的阻抗变换只改变阻抗的大小,不改变阻抗的性质。大小,不改变阻抗的性质。*n:1+_+_Zn2Z+返 回b)理理想想变变压压器器的的特特性性方方程程为为代代数数关关系系,因因此它是无记忆的多端元件。此它是无记忆的多端元件。a)a)理理想想变变压压器器既既不不储储能能,也也不不耗耗能能,在在电路中只起传递信号和能量的作用。电路中只起传递信号和能量的作用。功率性质功率性质下 页上 页*n:1+_u1+_u2i1i2表明 返 回例例1已已知知电电源源内内阻阻RS=1k,负负载载电电阻阻RL=10。为为使使RL获得最大功率,求理想变压器的变比获得最大功率,求理想变压器的变比n。当当 n2RL=RS 时匹配,即时匹配,即10n2=1000 n2=100, n=10 .下 页上 页RLuSRS*n:1+_n2RL+uSRS解解应用变阻抗性质应用变阻抗性质返 回例例2方法方法1:列方程:列方程解得解得下 页上 页+1 : 10501*+_解解返 回方法方法2:阻抗变换:阻抗变换方法方法3 3:戴维宁等效:戴维宁等效下 页上 页+1n2RL+1 : 101*+_返 回求求 Req:Req=1021=100戴维宁等效电路:戴维宁等效电路:下 页上 页Req1 : 101*+10050+返 回例例3已已知知图图示示电电路路的的等等效效阻阻抗抗Zab=0.25,求求理理想想变变压器的变比压器的变比n。解解应用阻抗变换应用阻抗变换外加电源得:外加电源得:下 页上 页 n=0.5 n=0.25Zabn : 11.510+* *1.5+返 回10-19下 页上 页返 回作 业10-110-310-510-810-1210-22
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号