资源预览内容
第1页 / 共12页
第2页 / 共12页
第3页 / 共12页
第4页 / 共12页
第5页 / 共12页
第6页 / 共12页
第7页 / 共12页
第8页 / 共12页
第9页 / 共12页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
九年级数学上册北师大第四章 图形的相似4.7相似三角形的性质第1课时 相似三角形中的对应线段之比1.明确相似三角形中对应线段与相似比的关系.(重点)2.能熟练运用相似三角形的性质解决实际问题(难点)学习目标问题:若两个直角三角形相似(如图1),分别由顶点A,A1向底边作垂线段AD,A1D1,判断AD与A1D1的比值是否等于相似比?对于锐角三角形和钝角三角形(如图),是否也有这样的结论?导入新课导入新课图图 1等于相似比,有讲授新课讲授新课相似三角形对应高的比等于相似比一解: ABCABC, B= B又 ADB =ADB =90,ABDABD (两角对应相等的两个三角形相似).从而(相似三角形的对应边成比例).问题:如图,ABC ABC,相似比为k,分别作BC,BC上的高AD,AD 求证:由此得到: 相似三角形对应高的比等于相似比类似的,我们可以得到其余两组对应边上的高的比也等于相似比 相似三角形对应角平分线的比、对应中线的比都等于相似比二问题:把上图中的高改为中线、角平分线,那么它们对应中线的比,对应角平分线的比等于多少?图中ABC和ABC相似,AD、AD分别为对应边上的中线,BE、BE分别为对应角的角平分线,那么它们之间有什么关系呢? 证明如下:已知:ABCABC,相似比为k,即 求证: 证明: ABCABC. B= B, 又AD,AD分别为对应边的中线. ABDABD.由此得到: 相似三角形对应的中线的比也等于相似比同学们可以试着自己用同样的方法求证三角形对应边上的角平分中线的比等于相似比 证明如下:已知:ABCABC,相似比为k,即 求证: 证明: ABCABC B= B, BAC= BAC 又AD,AD分别为对应角的平方线 ABDABD.3两个相似三角形对应中线的比为 ,则对应高的比为_ .当堂练习当堂练习2.相似三角形对应边的比为23,那么对应角的角平分线的比为_.2 31两个相似三角形的相似比为 , 则对应高的比为_, 则对应中线的比为_.解: ABCDEF, 解得,EH3.2(cm).答:EH的长为3.2cm.AGBCDEFH(相似三角形对应角平线的比等于相似比),4.已知ABCDEF,BG、EH分ABC和DEF的角平分线,BC=6cm,EF=4cm,BG=4.8cm.求EH的长.相似三角形的性质相似三角形对应高的比等于相似比课堂小结课堂小结相似三角形对应角平分线的比等于相似比相似三角形对应中线的比等于相似比
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号