资源预览内容
第1页 / 共47页
第2页 / 共47页
第3页 / 共47页
第4页 / 共47页
第5页 / 共47页
第6页 / 共47页
第7页 / 共47页
第8页 / 共47页
第9页 / 共47页
第10页 / 共47页
亲,该文档总共47页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
立体几何立体几何第七章第七章第五节直线、平面垂直的判定与性质第五节直线、平面垂直的判定与性质1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题0202课堂互动考点突破栏目导航0101课前回扣双基落实0101课前回扣双基落实1直线与平面垂直(1)直线和平面垂直的定义:直线l与平面内的_直线都垂直,就说直线l与平面互相垂直任意一条(2)直线与平面垂直的判定定理与性质定理:两条相交直线平行 2平面与平面垂直(1)平面与平面垂直的定义:两个平面相交, 如果它们所成的二面角是直二面角,就说这两个平面互相垂直(2)平面与平面垂直的判定定理与性质定理:垂线交线重要结论(1)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法)(3)垂直于同一条直线的两个平面平行(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直解析l,l,(面面垂直的判定定理),故A正确A 3(教材改编)PD垂直于正方形ABCD所在的平面,连接PB,PC,PA,AC,BD,则一定互相垂直的平面有_对解析由于PD平面ABCD,故平面PAD平面ABCD,平面PDB平面ABCD,平面PDC平面ABCD,平面PDA平面PDC,平面PAC平面PDB,平面PAB平面PAD,平面PBC平面PDC,共7对74(2019湖南六校联考)已知m和n是两条不同的直线,和是两个不重合的平面,下列给出的条件中一定能推出m的是()A且mB且mCmn且nDmn且解析由线面垂直的判定定理,可知C正确C 5(2019安徽黄山月考)如图,O为正方体ABCDA1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是()AA1DBAA1CA1D1DA1C1解析易知AC平面BB1D1DA1C1AC,A1C1平面BB1D1D又B1O平面BB1D1D,A1C1B1O.D 0202课堂互动考点突破师生共研考点一直线与平面垂直的判定与性质 1证明线面垂直的常用方法(1)利用线面垂直的判定定理(2)利用“两平行线中的一条与平面垂直,则另一条也与这个平面垂直”(3)利用“一条直线垂直于两个平行平面中的一个,则与另一个也垂直”(4)利用面面垂直的性质定理2证明线线垂直的常用方法(1)利用特殊图形中的垂直关系(2)利用等腰三角形底边中线的性质(3)利用勾股定理的逆定理(4)利用直线与平面垂直的性质师生共研考点二面面垂直的判定与性质 变式探究 在本例条件下,证明:平面PBC平面PAB.证明由(1)知PABC,又BCAB且PAABA,BC平面PAB,又BC平面PBC,平面PBC平面PAB.面面垂直的两种证明方法(1)定义法:利用面面垂直的定义,即判定两平面所成的二面角为直二面角,将证明面面垂直问题转化为证明平面角为直角的问题(2)定理法:利用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线,把问题转化成证明线线垂直加以解决本考点在高考中经常出现,主要考查线线、面面、线面平行(垂直)的转化,有一定的综合性,难度中档或中档偏上多维探究考点三平行、垂直关系中的综合问题 平行与垂直的综合应用问题的主要数学思想和处理策略(1)处理平行与垂直的综合问题的主要数学思想是转化,要熟练掌握线线、线面、面面之间的平行与垂直的转化(2)探索性问题一般是先根据条件猜测点的位置再给出证明,探索点的存在问题,点多为中点或三等分点中的某一个,也可以根据相似知识找点翻折问题的解题步骤素养练 如图所示,在四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点证明:(1)CDAE;(2)PD平面ABE.
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号