资源预览内容
第1页 / 共70页
第2页 / 共70页
第3页 / 共70页
第4页 / 共70页
第5页 / 共70页
第6页 / 共70页
第7页 / 共70页
第8页 / 共70页
第9页 / 共70页
第10页 / 共70页
亲,该文档总共70页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
海南省海南省20082008年普通高等学校招生年普通高等学校招生 全国统一考试数学科卷分析全国统一考试数学科卷分析主讲人主讲人 李红庆李红庆试试卷卷总总体体评评价价试试卷卷定定性性分分析析 试试题题点点评评与与答答卷卷分分析析 对对备备考考与与教教学学的的建建议议对对试试卷卷的的几几点点商商榷榷试卷总体评价试卷总体评价 海南省海南省20082008年高考数学试卷,是海南省实施新课程改革年高考数学试卷,是海南省实施新课程改革试验后的第二卷,也是海南省获得教育部批准自主考试的第试验后的第二卷,也是海南省获得教育部批准自主考试的第二卷,这份高考数学试题,以新的课程标准、全国考试大纲二卷,这份高考数学试题,以新的课程标准、全国考试大纲和海南考试说明为依据,试卷的结构沿袭了和海南考试说明为依据,试卷的结构沿袭了20072007年高考数学年高考数学试卷风格,紧密贴近中学教学,在坚持对基础知识和基本技试卷风格,紧密贴近中学教学,在坚持对基础知识和基本技能的考查的同时,与去年相比,更加重视数学思想与方法的能的考查的同时,与去年相比,更加重视数学思想与方法的考查。试卷从多角度、多视点、有层次地考查数学理性思维,考查。试卷从多角度、多视点、有层次地考查数学理性思维,考查考生对数学本质的理解,考查考生的数学素养和潜能。考查考生对数学本质的理解,考查考生的数学素养和潜能。试卷对新课程中新增内容和传统内容有机结合考查更加科学、试卷对新课程中新增内容和传统内容有机结合考查更加科学、规范和深化,体现新课程理念,有利于推进中学数学课程改规范和深化,体现新课程理念,有利于推进中学数学课程改革,有利于高校选拔考生革,有利于高校选拔考生 (一)、试题及考试成绩统计表(一)、试题及考试成绩统计表表一:表一:试卷结构分布试卷结构分布表:表:代代 数数几几 何何三三 角角其其 它它内内容容函函数数向向量量计计数数不不等等式式统统计计概概率率数数列列复复数数立立几几解解几几解解三三角角图图像像变变换换算算法法不不等等式式极极坐坐标标平平几几题题号号101021218 81 13 39 96 61 16 61 19 94 4,1 17 72 21212151518181 11 11 14 42 20 03 31 17 75 52 24 42 23 32 22 2分分值值17171 10 05 55 55 51 12 21 17 75 522222 22 25 55 55 55 51010合合计计7676分分,占,占50.67%(50.67%(较较去年增加去年增加5%5%) )4444,29.329.31515,10%(10%(- -5%)5%)1515分,占分,占10%10%注注:1 1、选做题中选做平面几何的考生约为、选做题中选做平面几何的考生约为62.2%62.2%,选不等式,选不等式 为为14.3%14.3%,极坐标为,极坐标为25.5%25.5%;2 2、函数减少一个小题、函数减少一个小题(5(5分分),),用不等式题替换了逻辑题用不等式题替换了逻辑题(5(5分分),), 用数列解答题替换三角解答题用数列解答题替换三角解答题(12(12分分),),其他考点基本保持其他考点基本保持 20072007年的格局。年的格局。3 3新课程新增内容所占比重由去年的新课程新增内容所占比重由去年的25%25%上升为上升为29%29%表二:考试成绩抽样统计表(表二:考试成绩抽样统计表(2008年、年、2007年各题的均分、难度比较)年各题的均分、难度比较) 题号题型、内容理(2008/2007) 均分难度1三角函数图像2复数四则运算3解三角形4等比数列通项与前n项和5程序框图6解不等式7三角恒等变换8平面向量共线的充要条件9计数10定积分,面积11抛物线定义与性质12三视图与均值不等式13平面向量线性运算14双曲线定义与性质15球内接六棱柱体积16统计统计茎叶茎叶图图表二:考试成绩抽样统计表(表二:考试成绩抽样统计表(2008年、年、2007年各题的均分、难度比较)年各题的均分、难度比较) 二二填空填空5.91/9.370.29/0.4717等差数列通项与前n项和/三角7.05/7.040.59/0.5918立体几何(线线角、线面角)立体几何(线线角、线面角)1.41/4.630.12/0.3919概率统计2.23/1.130.19/0.0920解析几何(直线、抛物线、椭圆解析几何(直线、抛物线、椭圆位置关系)位置关系)1.59/1.640.13/0.1421函数与导数、切线函数与导数、切线 0.67/2.970.06/0.25文理22平面几何3.900.39/文理23极坐标与与参数方程2.930.29/理24不等式4.490.45/选做题选做题22,23,24题加权平均题加权平均3.74/3.690.37/0.37卷第1-12题,每题5分33/350.55/0.58卷4个填空题,每题5分;必考解答题5个,选考解答题1个22.6/30.60.25/0.34全卷556/65.60.37/0.44注注: 第二卷平均分与去年相比,下降了第二卷平均分与去年相比,下降了8 8分分, ,其中填空题下降其中填空题下降3.463.46分分, ,立体几何解立体几何解答题下降答题下降3.23.2分,函数解答题下降分,函数解答题下降2.32.3分,分,其他题略有上升或与去年持平。(第一其他题略有上升或与去年持平。(第一卷的平均分卷的平均分3333是估计的数据)是估计的数据) 表四:各题抽样统计数据表四:各题抽样统计数据 (均分、难度、区分度、标准差)(均分、难度、区分度、标准差)卷题号二1718192021222324卷卷全卷平均分平均分5.915.917.07.05 51.41.41 12.22.23 31.59.1.59. 0.60.67 73.93.90 02.92.93 34.44.49 922.22.6 6333355.455.44 4区分度0.170.880.320.530.340.190.430.720.95标准差 5.10. 4.422.002.792.041.142.003.133.94难难度度0.290.290.50.59 90.10.12 20.10.18 80.130.130.060.060.30.39 90.20.29 90.40.45 50.20.25 50.50.55 50.370.37满分555512121212129060150试卷定性分析试卷定性分析 纵观整份试卷,给人平和清新、富有创新意识纵观整份试卷,给人平和清新、富有创新意识的感觉,体现了数学的基础性、应用性和工具性,的感觉,体现了数学的基础性、应用性和工具性,以重点知识主干线来挑选合理背景构建试题的主体,以重点知识主干线来挑选合理背景构建试题的主体,更加关注新教材新增内容的考查(新教材内容所占更加关注新教材新增内容的考查(新教材内容所占比重由比重由25%25%上升为上升为29%29%,)更加重视数学思想与方法,)更加重视数学思想与方法的考查,这份试卷具有以下特点:的考查,这份试卷具有以下特点:1.试卷的结构充分体现了课改区的命题原则试卷的结构充分体现了课改区的命题原则 本次试卷的结构充分体现了课改区的命题原本次试卷的结构充分体现了课改区的命题原则则: :超量命题超量命题, ,限量答题。限量答题。1 12121题继承了传统命题继承了传统命题的风格,选作题设计题的风格,选作题设计3 3道,理科考生可从道,理科考生可从22222424题中任选一题作答。并且在分值分布上保持去题中任选一题作答。并且在分值分布上保持去年所作的那些变化(填空题的分值从原来每小题年所作的那些变化(填空题的分值从原来每小题的的4 4分上升为每小题分上升为每小题5 5分,解答题分,解答题17172121题每题均题每题均为为1212分,分,“三选一三选一”选做题选做题1010分)。分)。 2.试题贴近课本,题型既有常规又有创新试题贴近课本,题型既有常规又有创新 选择题中的选择题中的111题题,填空题第,填空题第1315题都属于常规基础题。题都属于常规基础题。13题考查空间向量线性运算与模,题考查空间向量线性运算与模,14题考查双曲线的定义与基本性题考查双曲线的定义与基本性质的运用,质的运用,15题考查球内接六棱柱的体积计算题考查球内接六棱柱的体积计算,解答题中解答题中19,20,21及选做题及选做题,分别考查概率与统计,圆锥曲线与直线位置关系分别考查概率与统计,圆锥曲线与直线位置关系,函数与函数与导数、积分,平面几何,参数方程与坐标,含绝对值的不等式解法,导数、积分,平面几何,参数方程与坐标,含绝对值的不等式解法,也属于常规题,题型与往年高考题类似也属于常规题,题型与往年高考题类似,在高三综合复习阶段此类在高三综合复习阶段此类题型屡见不鲜,有感似曾相识,但就其涉及的数学思想方法和运算题型屡见不鲜,有感似曾相识,但就其涉及的数学思想方法和运算技巧而言技巧而言,对于海南新课程考生还是难度不小。这份卷中,有部分对于海南新课程考生还是难度不小。这份卷中,有部分试题较深层次地体现了新课标思想,例如,第试题较深层次地体现了新课标思想,例如,第16题题考查统计茎叶考查统计茎叶图,题型设计为答案开放题;对传统内容的考查也适度创新,例如,图,题型设计为答案开放题;对传统内容的考查也适度创新,例如,对立体几何知识的考查对立体几何知识的考查(第第12、15、17题题),与传统高考卷作比较,与传统高考卷作比较,更注重更注重标准标准中强调的识图、作图能力和立体几何中的模型思想、中强调的识图、作图能力和立体几何中的模型思想、方程思想和整体思想,创新意识较浓。较充分地体现课标理念,较方程思想和整体思想,创新意识较浓。较充分地体现课标理念,较好地发挥了试题对中学教学的导向作用好地发挥了试题对中学教学的导向作用.试卷围绕课程标准中内试卷围绕课程标准中内容主线、核心能力、改革理念命题,关注了必修和选修的比例,力容主线、核心能力、改革理念命题,关注了必修和选修的比例,力图达到推进课程改革的目的。试卷对三视图、算法框图、定积分以图达到推进课程改革的目的。试卷对三视图、算法框图、定积分以及统计概率等新增内容进行了较充分的考查。及统计概率等新增内容进行了较充分的考查。3试题突出知识的主干线,注重对新增内容的考查试题突出知识的主干线,注重对新增内容的考查 从试卷的内容结构上看从试卷的内容结构上看, ,三角(包括三角函数、解三角形和三角三角(包括三角函数、解三角形和三角恒变换)、立体几何、解析几何、导数、数列恒变换)、立体几何、解析几何、导数、数列, ,始终是知识考查的主始终是知识考查的主线线. .普通高中课程标准实验教科书普通高中课程标准实验教科书系列教材新增内容大都是近代、系列教材新增内容大都是近代、现代数学的基础知识,这些知识成为支撑数学学科知识体系的不可现代数学的基础知识,这些知识成为支撑数学学科知识体系的不可缺少的重要内容,在这份考卷中保持较高的比例,它与传统的重要缺少的重要内容,在这份考卷中保持较高的比例,它与传统的重要知识板块构成试题主体,审视这份高考卷可发现,以新增教学内容知识板块构成试题主体,审视这份高考卷可发现,以新增教学内容导数与积分、三视图与直观图、程序框图、统计与概率、坐标导数与积分、三视图与直观图、程序框图、统计与概率、坐标系与参数方程,平面几何等作为考点或背景的试题所占比重不小。系与参数方程,平面几何等作为考点或背景的试题所占比重不小。例如第例如第5 5题题的程序框图、第的程序框图、第1010题题的利用定积分求面积、的利用定积分求面积、 第第1212题的三题的三视图、第视图、第1616题统计茎叶图,选考题中的第题统计茎叶图,选考题中的第2222题的平面几何、第题的平面几何、第2323题题的坐标系与参数方程等均为课改区数学课程中新增加的内容的坐标系与参数方程等均为课改区数学课程中新增加的内容, , 新增新增内容累计分值内容累计分值4343分,占了整份试卷分值比重的分,占了整份试卷分值比重的29%29%,比,比20072007年提高了年提高了3 3个百分点。命题重心如此迁移,反映了数学教育改革与高考改革的个百分点。命题重心如此迁移,反映了数学教育改革与高考改革的发展方向,与高中新课程改革自然接轨,命题者此番匠心,值得青发展方向,与高中新课程改革自然接轨,命题者此番匠心,值得青睐睐 4强化思想方法,融数学思想方法于强化思想方法,融数学思想方法于“双基双基”试题之中,试题之中,深化能力立意导向深化能力立意导向 今年的高考试题,沿着近年高考命题改革的正确方向,强调由知识立意向今年的高考试题,沿着近年高考命题改革的正确方向,强调由知识立意向能力立意转化,强调基础与能力并重,知识与能力并举,悉心在知识交汇处设能力立意转化,强调基础与能力并重,知识与能力并举,悉心在知识交汇处设计试题,有效地将数学思想蕴含于数学基础知识与基本技能之中,倡导通性通计试题,有效地将数学思想蕴含于数学基础知识与基本技能之中,倡导通性通法,全面综合考查。试卷中没有偏题、怪题。在选择题、填空题中考查了三角法,全面综合考查。试卷中没有偏题、怪题。在选择题、填空题中考查了三角函数图象、解三角形、三角函数的恒等变换与求值,平面向量的坐标运算、导函数图象、解三角形、三角函数的恒等变换与求值,平面向量的坐标运算、导数的运算、复数的四则运算、等差、等比数列的通项与前数的运算、复数的四则运算、等差、等比数列的通项与前n项和,算法和框图,项和,算法和框图,三视图和几何体的体积,统计茎叶图、排列组合等,这些内容的解决没有特殊三视图和几何体的体积,统计茎叶图、排列组合等,这些内容的解决没有特殊的技巧,主要是概念与简单推理运算。在解答题中,对数列、立体几何、概率的技巧,主要是概念与简单推理运算。在解答题中,对数列、立体几何、概率与统计、平面向量与解析几何、函数与导数以及选做题的平面几何证明、极坐与统计、平面向量与解析几何、函数与导数以及选做题的平面几何证明、极坐标与参数方程、不等式等内容的考查得比较全面,重视对常规思想方法的考查,标与参数方程、不等式等内容的考查得比较全面,重视对常规思想方法的考查,如第如第11题题,以抛物线为素材,第,以抛物线为素材,第24题题(选考题)以不等式为素材,考查数形结(选考题)以不等式为素材,考查数形结合思想,第合思想,第12题三视图为背景考查构造图形的方法和能力,理科第题三视图为背景考查构造图形的方法和能力,理科第21题题是函数、是函数、导数和定积分的综合问题,突出考查函数的思想和分类与整合的数学思想。导数和定积分的综合问题,突出考查函数的思想和分类与整合的数学思想。试试题还突出对新课程标准中新增的思想和方法的考查,如理科第题还突出对新课程标准中新增的思想和方法的考查,如理科第5题以程序框图题以程序框图为文本,考查算法的思想和读图的能力,立体几何突出考查考生读图、构图、为文本,考查算法的思想和读图的能力,立体几何突出考查考生读图、构图、画图及其计算的能力等,第画图及其计算的能力等,第19题题虽然考查概率分布,但实际上是对概率统计思虽然考查概率分布,但实际上是对概率统计思想以及数据处理能力的重点考查。想以及数据处理能力的重点考查。5关注知识来源,体现数学应用,凸显时代背景关注知识来源,体现数学应用,凸显时代背景 试卷创设的背景符合考生的生活实际,有一定的时代气息。例如第16题,以棉花纤维长度为背景,考查统计茎叶图,第19题,以投资项目利润问题为背景,考查随机变量的概率分布与方差;第5题,考查算法的基本思想、框图、程序语言,体现出时代的特色。这些试题充分展示了数学应用的广泛性,体现出现代与传统、数学与文化的交融,对推动数学教学改革起到良好的导向作用。 试题点评与答卷分析试题点评与答卷分析 第第卷选择题卷选择题 12道小题总体立意简明,内涵丰富,基本涵盖知识的主干线。道小题总体立意简明,内涵丰富,基本涵盖知识的主干线。注重基础,除第注重基础,除第12题外,均为贴近课本的容易题或中等题,涉题外,均为贴近课本的容易题或中等题,涉及数学各分支常见的知识点,考生容易进入角色,有效地发挥及数学各分支常见的知识点,考生容易进入角色,有效地发挥了了“门坎效应门坎效应”。第。第6题考查不等式解法,第(题考查不等式解法,第(10)题考查定)题考查定积分求面积问题,这两个试题新而不难;第积分求面积问题,这两个试题新而不难;第10题考查灵活利用题考查灵活利用定积分求函数曲线围成的平面区域面积问题,试题素材源于课定积分求函数曲线围成的平面区域面积问题,试题素材源于课本,难度适中;第本,难度适中;第12题对空间想象能力的考查要求较高,突出题对空间想象能力的考查要求较高,突出了对立体几何的模型思想、逆向思维和空间想象能力的考查,了对立体几何的模型思想、逆向思维和空间想象能力的考查,体现了模型思想在研究解决几何问题中的思维价值,富有创意。体现了模型思想在研究解决几何问题中的思维价值,富有创意。考生可以通过类比联想,构造长方体模型来求解。此题作为第考生可以通过类比联想,构造长方体模型来求解。此题作为第卷选择题中的较难题,难度定位恰当卷选择题中的较难题,难度定位恰当第二题第二题填空题填空题 重点考查掌握基础知识、基本技能的灵活程度及对数学本质认识的水平,试题思路清晰,梯度合理,编排布局较科学.但从考生答卷看出,此大题平均分只有5.91分,比去年的9.37分降低了3.46分,得分率偏低。因运算能力差丢5分的人不在少数。填空题包含4个小题(1316),其中填空题第1315题都属于常规基础题。13题考查向量线性运算与模,14题考查双曲线的定义与基本性质的运用,15题考查球内接六棱柱的体积计算,第16题为开放性填空题,涉及的内容是统计茎叶图,开放度过大。填空题的答卷抽样统计数据如下:填空题的答卷抽样统计数据如下:平均分平均分 标准差标准差 难度难度 区分度区分度 5.91 5.10 0.39 0.17 答卷中反映出的各小题的具体情况如下:答卷中反映出的各小题的具体情况如下: 第第13题为空间向量题,给出两个三元向量题为空间向量题,给出两个三元向量a,b,以及,求的,以及,求的数值。该题难度较低,大部分考生能正确答案,丢分的原因数值。该题难度较低,大部分考生能正确答案,丢分的原因多是忽略了这个条件,把多是忽略了这个条件,把-2也当作结果列出;也当作结果列出;第第14题为解析几何问题。求由一个已知的双曲线右顶点,右题为解析几何问题。求由一个已知的双曲线右顶点,右焦点以及渐近线与双曲线的焦点所围三角形面积。此题得分焦点以及渐近线与双曲线的焦点所围三角形面积。此题得分率较第率较第13题低,考生答错的情况较多,没有明显一致的错误题低,考生答错的情况较多,没有明显一致的错误类型,零分率也较高。究其原因应是计算出错或是对双曲线类型,零分率也较高。究其原因应是计算出错或是对双曲线的定义与基本性质没有掌握好;的定义与基本性质没有掌握好;第第15题是立体几何题。已知某六棱柱的侧棱垂直底面,且其题是立体几何题。已知某六棱柱的侧棱垂直底面,且其体积和底面周长已知,求其外接球体的体积。此题的平均得体积和底面周长已知,求其外接球体的体积。此题的平均得分亦比较低,绝大多数答错的考生均在计算球体半径时出错。分亦比较低,绝大多数答错的考生均在计算球体半径时出错。有的仅仅把球体的体积计算公式列出来。第有的仅仅把球体的体积计算公式列出来。第14和和15两个题两个题中还有一种现象,即部分考生将结果用小数表示,而精度又中还有一种现象,即部分考生将结果用小数表示,而精度又不统一;不统一;第第16题是一个统计题。题目分别给出甲乙两个品种棉花的一个样本及其茎叶图。题是一个统计题。题目分别给出甲乙两个品种棉花的一个样本及其茎叶图。要求通过茎叶图,在对甲乙进行对比后,给出两个统计结论。此题开放性强,自要求通过茎叶图,在对甲乙进行对比后,给出两个统计结论。此题开放性强,自由度大,但是区分度不够好。考生几乎都有答题,而且许多考生仿佛将其当作是由度大,但是区分度不够好。考生几乎都有答题,而且许多考生仿佛将其当作是一个看图作文来解答,作答情况千奇百怪。考生丢分主要原因是不能正确读图,一个看图作文来解答,作答情况千奇百怪。考生丢分主要原因是不能正确读图,不能正确区分样本与总体及其随机变量的数字特征,不能正确理解数字特征的内不能正确区分样本与总体及其随机变量的数字特征,不能正确理解数字特征的内涵,不能正确审题。涵,不能正确审题。总的看来,填空题中代数题得分较高,而几何题得分较低。反映出学生的几何思总的看来,填空题中代数题得分较高,而几何题得分较低。反映出学生的几何思维和计算能力相对较弱。最为特别是统计题。这原本是一个很好的题目,但是由维和计算能力相对较弱。最为特别是统计题。这原本是一个很好的题目,但是由于其考查的能力与传统数学能力不同,更侧重于一种综合分析能力,以至于出现于其考查的能力与传统数学能力不同,更侧重于一种综合分析能力,以至于出现部分考生前三题得零分,而第部分考生前三题得零分,而第4题却得到满分的现象。此外,虽然许多考生在回题却得到满分的现象。此外,虽然许多考生在回答统计题时都能给出接近合理的结论,但是却明显可以看出对统计概念理解不透答统计题时都能给出接近合理的结论,但是却明显可以看出对统计概念理解不透彻,对统计术语的使用极其不规范,文字驾驭能力很差。但更主要的原因应该在彻,对统计术语的使用极其不规范,文字驾驭能力很差。但更主要的原因应该在于中学数学教育中对统计教学普遍不重视。于中学数学教育中对统计教学普遍不重视。解答第解答第16题时,可根据茎叶图可定性或定量得到统计量的数字特征定性得到中题时,可根据茎叶图可定性或定量得到统计量的数字特征定性得到中位数比较容易,但得到标准差和均值在计算上有一定的困难,可以进行定性的描位数比较容易,但得到标准差和均值在计算上有一定的困难,可以进行定性的描述述第第16题属于答案开放性试题,但开放过度!除中位数在教材上由茎叶图体现外,题属于答案开放性试题,但开放过度!除中位数在教材上由茎叶图体现外,其它的统计的数字特征很少用茎叶图体现,再者定性描述历来不是数学命题的风其它的统计的数字特征很少用茎叶图体现,再者定性描述历来不是数学命题的风格,也很难科学地、严谨地给出答案(包括命题者),属于较难题格,也很难科学地、严谨地给出答案(包括命题者),属于较难题第三题、解答题第三题、解答题1722题题 17题题本题考查等差数列的通项公式、前项和公式以及方程思想、解方程本题考查等差数列的通项公式、前项和公式以及方程思想、解方程组的基本技能。组的基本技能。本题由已知条件和等差数列的通项公式,列方程组求解,可得,不难本题由已知条件和等差数列的通项公式,列方程组求解,可得,不难写出通项公式();由前项和公式和二次函数的性质或等差数列的单调写出通项公式();由前项和公式和二次函数的性质或等差数列的单调性,容易求出前项和的最大值本题属于简单的基础题题意清晰,难性,容易求出前项和的最大值本题属于简单的基础题题意清晰,难度低,并且设置在解答题的第一个位置,布局合理。考生得分率较高,度低,并且设置在解答题的第一个位置,布局合理。考生得分率较高,但由于计算失误导致丢分或公式记错的考生也为数不少。因此,本题能但由于计算失误导致丢分或公式记错的考生也为数不少。因此,本题能体现大众化,让不同思维层次的学生都有获得成功的机会。阅卷可见,体现大众化,让不同思维层次的学生都有获得成功的机会。阅卷可见,本题不仅触击率高,满分率也较高,区分度好。答卷抽样统计数据如下:本题不仅触击率高,满分率也较高,区分度好。答卷抽样统计数据如下:0 01234567817.717.77 7% %3.63%3.1%2.18%3.01%2.33%7.48%5.37%4.35%910111212平均平均分分标准标准差差难度难度:区分区分度度7.67%14.77%9.38%18.518.59 9% %7.057.054.424.420.590.590.88第第18题题 本题考查线面、线线成角的基本概念,同时考查了空间想象能力。用公本题考查线面、线线成角的基本概念,同时考查了空间想象能力。用公理化知识和空间向量知识都能很简捷解答本题,关键是算出点到三个平理化知识和空间向量知识都能很简捷解答本题,关键是算出点到三个平面、和的距离关系,一旦这个问题解决了,其他问题就迎刃而解了特面、和的距离关系,一旦这个问题解决了,其他问题就迎刃而解了特别用公理化知识解题,要联想到长方体模型的作用别用公理化知识解题,要联想到长方体模型的作用从阅卷来看用向量法解答的考生较多,这也反映出师生在高考备考过程从阅卷来看用向量法解答的考生较多,这也反映出师生在高考备考过程中对向量法解空间几何问题的重视程度,但对立体几何模型思想和整体中对向量法解空间几何问题的重视程度,但对立体几何模型思想和整体思想价值的本质性认识,教学仅停留在过份的模式化的训练层面,对学思想价值的本质性认识,教学仅停留在过份的模式化的训练层面,对学生的创造性解题能力产生了不必要的负面影响。生的创造性解题能力产生了不必要的负面影响。本题如果用建立空间直角坐标系的方法来解决,虽不难得出除点本题如果用建立空间直角坐标系的方法来解决,虽不难得出除点P外外的其余各点的坐标,难点和关键是求点的其余各点的坐标,难点和关键是求点P的坐标。究其主要原因是,题的坐标。究其主要原因是,题设只给出了设只给出了1个条件(个条件(PDA=600),而不是),而不是3个(有个(有2个条件是隐含的)个条件是隐含的),考生由于缺乏对知识横向联系的认识,无法挖掘出来。如果用公理化,考生由于缺乏对知识横向联系的认识,无法挖掘出来。如果用公理化的方法,虽不难找到的方法,虽不难找到DP与与CC/所成的角及作出所成的角及作出DP与平面与平面AA/D/D所成的所成的角,但苦于关键的线段角,但苦于关键的线段DP的长度求不出来,最终只能望题兴叹!的长度求不出来,最终只能望题兴叹!第第18题题 其实,本题的入口虽然不是很宽,但还是比较直的。其实,本题的入口虽然不是很宽,但还是比较直的。首先,对于擅长用建立空间直角坐标系的方法来解立首先,对于擅长用建立空间直角坐标系的方法来解立体几何题的考生,设体几何题的考生,设P(x,y,z),由点,由点P在对角线在对角线BD/上,可得上,可得x=y,再由,再由PDA=600得出(也可以运得出(也可以运用和向量的知识和三点共线的知识求出用和向量的知识和三点共线的知识求出x、y、z的值)的值),再代入线线角和线面角(易知平面,再代入线线角和线面角(易知平面AA/D/D的法向的法向量)公式,问题马上迎刃而解!其次,对于擅长用公量)公式,问题马上迎刃而解!其次,对于擅长用公理化方法来解立体几何题的考生,只要按求角的常规理化方法来解立体几何题的考生,只要按求角的常规思路,把所求角放在三角形中(于是构造三角形便成思路,把所求角放在三角形中(于是构造三角形便成了首要任务),通过解三角形求出所求的角。了首要任务),通过解三角形求出所求的角。第第18题题 以下是考生使用公理化方法解决该题的一个典型案例:(1)连BD,作PEBD于E,并作EFAD于F,连PFEFAB,PEDD/设EF=x=DFPDA=600 , APB=450PD=2x,DE=x cosBDP=DE/PD=BDP=DPE=450又PEDD/CC/PECC/DPE是DP和CC/的夹角即DP和CC/所成的角为450(2)PEDD/DD/平面AA/D/DEF是P到平面AA/D/D的距离设DP与平面AA/D/D所成的角为sin=EF/DP=x/2x=1/2=300DP与平面AA/D/D所成的角为300第第18题题 本题阅卷结果抽样统计数据如下: 0 01234567844.44.1 10 0% %20.80%14.78%10.50%4.34%1.77%0.86%0.47%0.34%910111212平均平均分分标准标准差差难度难度区分区分度度0.35%0.53%0.49%0.660.66% %1.411.412.002.000.120.120.32第第18题题 从以上结果看,平均分仅从以上结果看,平均分仅1.41分,较去年的分,较去年的4.63分下降了分下降了3.22分,零分率高达分,零分率高达44.10%,满分率仅,满分率仅0.66%。这道题对于海南的考生是超难的,甚至可以说是无。这道题对于海南的考生是超难的,甚至可以说是无效的效的.但从该题的设计上看,不应该是这样的结果,这一结果与我们的期望值但从该题的设计上看,不应该是这样的结果,这一结果与我们的期望值相去甚远!造成这道题得分超低的主要原因有以下几个方面:相去甚远!造成这道题得分超低的主要原因有以下几个方面:.该题的设计门槛过高该题的设计门槛过高从高达从高达44.10%的零分率上看,近半数的考生面对这道题要么犹如蚍蜉撼大的零分率上看,近半数的考生面对这道题要么犹如蚍蜉撼大树,要么只能望题兴叹,无从下手,门槛确实太高了!树,要么只能望题兴叹,无从下手,门槛确实太高了!考生得分意识不高,得分手段不强考生得分意识不高,得分手段不强在该题的评分标准中,建立空间直角坐标系、写出在该题的评分标准中,建立空间直角坐标系、写出A、C、C/、D点的坐标、点的坐标、设出点设出点P的坐标并代入公式计算、写出线线角公式、线面角公式、使用公理化的坐标并代入公式计算、写出线线角公式、线面角公式、使用公理化方法找出线线角、作出线面角等等都是得分点。按理说,拿方法找出线线角、作出线面角等等都是得分点。按理说,拿1至至5分是容易做到分是容易做到的,可考试结果令人遗憾,考生得分的欲望太弱了,根本就不想去攻城掠地,的,可考试结果令人遗憾,考生得分的欲望太弱了,根本就不想去攻城掠地,竟然有竟然有44.10%的考生两手空空,毫无收获!的考生两手空空,毫无收获!考生运算能力和应试能力低下考生运算能力和应试能力低下不少考生知道点不少考生知道点P的横、纵坐标相等,使用夹角公式却怎么也算不出点的横、纵坐标相等,使用夹角公式却怎么也算不出点P的确切的确切坐标,其实使用整体运算的方法消去坐标,其实使用整体运算的方法消去x也是可以得出结果的(这就是整体思想也是可以得出结果的(这就是整体思想的价值所在!),可遗憾的是,多数考生在考场上却不会运用。的价值所在!),可遗憾的是,多数考生在考场上却不会运用。第19题(概率统计题)本题综合考查离散变量的分布列、数学期望及方差,实际问题的函数建本题综合考查离散变量的分布列、数学期望及方差,实际问题的函数建模的知识,其中还涉及方差的线性变换问题,属于较灵活性试题,能考模的知识,其中还涉及方差的线性变换问题,属于较灵活性试题,能考查分析问题、解决问题和运算能力该题是把必修中的统计与选修的离查分析问题、解决问题和运算能力该题是把必修中的统计与选修的离散变量的概率分布相结合命题的新颖题型,富有创意却又没有完全脱离散变量的概率分布相结合命题的新颖题型,富有创意却又没有完全脱离原来的模式,第一问求方差,但要求方差又必须先求随机变量的分布列原来的模式,第一问求方差,但要求方差又必须先求随机变量的分布列和期望,这保留了原来的模式分布列和期望,这保留了原来的模式分布列期望期望方差,使得考生感觉方差,使得考生感觉此题并不陌生。但由于有很多考生不理解利润率的概念,所以本题入手此题并不陌生。但由于有很多考生不理解利润率的概念,所以本题入手较难;第二问是最值问题,近几年一直在考概率,没有考函数类的应用较难;第二问是最值问题,近几年一直在考概率,没有考函数类的应用问题,今年的这道题,注重了知识的横向联系,从新的视角考查概率,问题,今年的这道题,注重了知识的横向联系,从新的视角考查概率,把函数和概率有机结合,综合考查。由于本题运算量较大,特别是第二把函数和概率有机结合,综合考查。由于本题运算量较大,特别是第二问数值又特别小,所以只让求出问数值又特别小,所以只让求出x在为何值时函数可以取得最小值,并在为何值时函数可以取得最小值,并不需要求出最小值,这样减少了一定的运算量,又因为这个函数是二次不需要求出最小值,这样减少了一定的运算量,又因为这个函数是二次函数,可以配方又可利用导数来解决问题,方法比较灵活。函数,可以配方又可利用导数来解决问题,方法比较灵活。 第19题(概率统计题)考试结果抽样统计数据如下: 0 01234567842.42.5 59 9% %14.83%9.78%4.44%5.72%6.64%4.94%3.56%5.03%910111212平均平均分分标准标准差差难度难度:区分区分度度1.14%0.43%0.48%0.420.42% %2.232.232.792.790.190.190.53第19题(概率统计题)考试结果表明:此题学生得分较低,全省平均分考试结果表明:此题学生得分较低,全省平均分2.23分,有分,有42.59%的学生得零的学生得零分,有分,有25%得得1分或分或2分,仅有分,仅有1.4%的学生得的学生得10分以上。究其失分原因,主分以上。究其失分原因,主要有以下几方面:要有以下几方面:(1)不理解利润率这个概念,不能把利润率转化为利润,所以入手较难。不理解利润率这个概念,不能把利润率转化为利润,所以入手较难。(2)本题运算量较大,如果把百万化为万元作单位,数据又特别大,若不转化,本题运算量较大,如果把百万化为万元作单位,数据又特别大,若不转化,在第二问中数据又特别小,考生运算能力差,在运算过程中容易出现小数在第二问中数据又特别小,考生运算能力差,在运算过程中容易出现小数点错位。点错位。(3)公式记不清楚,期望和方差概念分不清楚。又受试卷所给的标准差公式公式记不清楚,期望和方差概念分不清楚。又受试卷所给的标准差公式的影响,三个概念更是分不清楚,还有同学误用二项分布公式的影响,三个概念更是分不清楚,还有同学误用二项分布公式(4)数学语言不过关,字母较多,符号表示混乱,数学语言不过关,字母较多,符号表示混乱,和和,等分不清楚,等分不清楚,还有同学不用规定的字母表示,还有同学随意创造字母和符号,比如,五还有同学不用规定的字母表示,还有同学随意创造字母和符号,比如,五花八门。花八门。第第20题题 答卷抽样统计分析如下: 0 01234567840.140.10 0% %16.90%22.24%9.42%1.14%5.78%1.37%0.85%0.48%910111212平均平均分分标准标准差差难度难度:区分区分度度0.34%0.62%0.16%0.620.62% %1.591.592.042.040.130.130.34第第20题题 本题属于常见的平面向量与解析几何交汇的常规题型考查直线、圆锥曲线和本题属于常见的平面向量与解析几何交汇的常规题型考查直线、圆锥曲线和向量的有关知识。试题以抛物线、椭圆的基础知识为切入点,结合平面向向量的有关知识。试题以抛物线、椭圆的基础知识为切入点,结合平面向量,考查了考生灵活运用基础知识解决数学问题的能力和简整理的运算能量,考查了考生灵活运用基础知识解决数学问题的能力和简整理的运算能力。力。第(第(I)小题求椭圆的标准方程,也就是需确定正数)小题求椭圆的标准方程,也就是需确定正数a、b的值。可从抛物线定的值。可从抛物线定义得出交点义得出交点M的坐标,再代入椭圆方程求得的坐标,再代入椭圆方程求得a、b的一个关系式,又由可得的一个关系式,又由可得a、b的值。但由于这需要求解一个关于的值。但由于这需要求解一个关于a,b的分式方程组,消元后是一个关的分式方程组,消元后是一个关于于a(或(或b)的)的4次方程,使不少考生望而却步,无法到达终点;如求得点次方程,使不少考生望而却步,无法到达终点;如求得点M后,用椭圆定义得后,用椭圆定义得2a的值,从而确定的值,从而确定a,b,不失为最佳的解法。在求点,不失为最佳的解法。在求点M的坐标时,一部分考生运用平几知识,使得求解过程简单而新颖,令人耳的坐标时,一部分考生运用平几知识,使得求解过程简单而新颖,令人耳目一新。目一新。第(第(II)小题求直线的方程。首先需要认识向量式)小题求直线的方程。首先需要认识向量式的意义。的意义。由直线确定的斜率,接着由直线方程与椭圆方程联立消元,由直线确定的斜率,接着由直线方程与椭圆方程联立消元,整个过程近整个过程近乎于程序化。以下是考生答卷中的解法典型案例:乎于程序化。以下是考生答卷中的解法典型案例:(注:与标准答案相同的解法略)(注:与标准答案相同的解法略)第第20题题 第(第(I)问的解法要点:)问的解法要点:由于由于M在在上以及上以及MF=,利用抛物线定义求利用抛物线定义求M,用椭,用椭圆圆定义求得定义求得,又,又,从而得到,从而得到所求方程为所求方程为(这个解法优于标准答案)(这个解法优于标准答案)方法二:在同上求得方法二:在同上求得M后,因后,因M在上,用待定系数法求在上,用待定系数法求a,b.得得的方程:的方程:第第20题题 方法三:在求点方法三:在求点M坐标时,使用平面几何知识坐标时,使用平面几何知识由抛物线由抛物线=知(知(1,0),于是椭圆左),于是椭圆左焦点焦点(-1,0),抛物线),抛物线准线:准线:设设M(,),由勾股定理得:),由勾股定理得:(取(取0)于是)于是又由椭圆焦点半径公式又由椭圆焦点半径公式得:得:于是于是()方程为:方程为:第第20题题 第(第(II)小题的解法要点:)小题的解法要点:由由知四边形知四边形MFN是平行四边形是平行四边形,其中心为原点其中心为原点O,因因由由与与OM的斜率相等可求的斜率相等可求的斜率:的斜率:设设:由由消去消去y并整理得并整理得设设根据韦达定理,由条件根据韦达定理,由条件(即即=0)求得求得从而得从而得的方程为的方程为或或(注:本解法中对直线方程式假设为(注:本解法中对直线方程式假设为“比标准答案中的比标准答案中的“”更具一般性更具一般性)第第20题题 关于考生解题失误的分析关于考生解题失误的分析1)有些考生不会求抛物线的焦点,有些考生混淆椭圆、双曲线中有些考生不会求抛物线的焦点,有些考生混淆椭圆、双曲线中a.b.c的关的关系,反映了考生最基本知识的缺失。系,反映了考生最基本知识的缺失。2)有些考生想从有些考生想从中求得点中求得点M的坐标,再用的坐标,再用求出求出a、b,思路未尝不可,思路未尝不可,但由于运算量过大,大多半途而废。从另一角度看,这但由于运算量过大,大多半途而废。从另一角度看,这些些考生不会从考生不会从入手求点入手求点M的坐标,反映了考生思维层次低,导致不的坐标,反映了考生思维层次低,导致不能紧扣已知条件解题。能紧扣已知条件解题。3)第第2问有较大的运算量。即使思路完全正确,最终也只有极少数人求得正问有较大的运算量。即使思路完全正确,最终也只有极少数人求得正确答案,考生的运算能力不容乐观。确答案,考生的运算能力不容乐观。4)第第1问重点考查思维能力,第问重点考查思维能力,第2问重点考查运算能力。本题难点设置过于问重点考查运算能力。本题难点设置过于靠前,也是造成考生得分率偏低、零分率高的主要原因之一。靠前,也是造成考生得分率偏低、零分率高的主要原因之一。第第21题题 答卷统计分析如下: 0 01234567863.263.23 3% %20.43%7.90%4.53%3.23%0.24%0.11%0.14%0.14%910111212平均平均分分标准标准差差难度难度:区分区分度度0.03%0.00%0.02%0.000.00% %0.670.671.141.140.060.060.19第第21题题 本题主要考查函数解析式、导数、函数图象的对称性以及定值问题,考查本题主要考查函数解析式、导数、函数图象的对称性以及定值问题,考查综合运用基础知识和数形结合的思想方法分析、探究问题、解决问题的能力。属综合运用基础知识和数形结合的思想方法分析、探究问题、解决问题的能力。属于较难的试题从知识的综合性以及覆盖面来看是一道好题于较难的试题从知识的综合性以及覆盖面来看是一道好题.第一问可以用复合第一问可以用复合函数的导数或导数公式中的商式公式求解,同时兼顾切线问题,属于基础能力要函数的导数或导数公式中的商式公式求解,同时兼顾切线问题,属于基础能力要求;第二问考查函数的对称性证明并探讨对称中心,还可以用函数图象的平移求求;第二问考查函数的对称性证明并探讨对称中心,还可以用函数图象的平移求解;第三问考查有关平面图形面积的定值问题,解法相对单一。解;第三问考查有关平面图形面积的定值问题,解法相对单一。从考生答卷情况看,本题得分率偏低从考生答卷情况看,本题得分率偏低(平均分平均分0.67),难度偏大(难度为,难度偏大(难度为0.12),区分度差。但本题是解答题最后一道题,作为压轴题,还是比较恰当的。),区分度差。但本题是解答题最后一道题,作为压轴题,还是比较恰当的。考生失分主要原因有以下考生失分主要原因有以下5种:种:1)时间不够,零分率高达时间不够,零分率高达63.23,部分同学列出方程,明显没时间解答;,部分同学列出方程,明显没时间解答;2)导数公式不熟;导数公式不熟;3)运算能力差,解方程中出现很低级的错误;运算能力差,解方程中出现很低级的错误;4)对对称性证明不熟悉,由于没有给出对称中心,考生对对称性的证明问题不对对称性证明不熟悉,由于没有给出对称中心,考生对对称性的证明问题不知从何下手;知从何下手;5)第三问的证明第三问的证明,由于涉及含有字母的代数式运算,基本属于被放弃的对象。由于涉及含有字母的代数式运算,基本属于被放弃的对象。本题第二问本题第二问,如在问题设计上做一点修改,也许得分率会提高,建议改为先探索如在问题设计上做一点修改,也许得分率会提高,建议改为先探索对称中心,再证明,使试题具有一个合理坡度。对称中心,再证明,使试题具有一个合理坡度。第(第(2224)题)题(选做题选做题) 三道选做题,题型较为常规,难度适中,但3道题难度不一致,不等式题相对简单些。3题的得分率都高于必做题。 2224题答卷抽样统计分析数据题答卷抽样统计分析数据:22题 0 01234567812.31%12.31%3.37%5.09%8.39%16.99%50.04%0.57%0.23%055%910平均平均分分标准标准差差难度难度:区分区分度度0.68 %1.78%3.903.902.002.000.390.390.43第(第(2224)题)题(选做题选做题) 23题题0 0123456783 38 8. .0 00 0% %5.93%7.20%8.87%17.25%2.47%4.00%2.51%566%910平平均均分分标标准准差差难难度度:区区分分度度2.89 %5.24%2.2.9 93 33.3.1 13 30.0.2 29 90.72第(第(2224)题)题(选做题选做题) 24题题0 01234567822.022.04 4% %14.49%7.87%612%4.47%4.40%3.62%3.27%805%910平均平均分分标准标准差差难度难度:区分区分度度4.92 %20.75%4.494.492.002.000.450.450.95第(第(2224)题)题(选做题选做题) 选做题选做题22题,考查圆的切线性质和直角三角形的射影定理,由于题,考查圆的切线性质和直角三角形的射影定理,由于图中的线段较多,干扰信息较多,属于中档偏难的题它有两个非图中的线段较多,干扰信息较多,属于中档偏难的题它有两个非常明显的特点:第一,起点并不很高,在能正确审题的前提下,解常明显的特点:第一,起点并不很高,在能正确审题的前提下,解决第一问是容易的决第一问是容易的.基于考查能力、拉大区分度的需要,第二问对基于考查能力、拉大区分度的需要,第二问对思维能力要求比第一问明显高一个层次。本题的难度和去年相比较思维能力要求比第一问明显高一个层次。本题的难度和去年相比较是大体持平(第二问难度略有提升),第一问考查直角三角形中的是大体持平(第二问难度略有提升),第一问考查直角三角形中的基本性质定理,属于容易题,第基本性质定理,属于容易题,第2个问题是证明角为定值个问题是证明角为定值(特殊角特殊角),表面看来,表面看来,要用计算法证明,其实不然,是通过证明三角形相似要用计算法证明,其实不然,是通过证明三角形相似得到对应角相等完成证明的。此问大多数考生无从下手,得分率较得到对应角相等完成证明的。此问大多数考生无从下手,得分率较低。低。评价过程发现,有评价过程发现,有60.02%考生选做第考生选做第22题。究其原因题。究其原因,主要有以下主要有以下几方面几方面:此题所属的位置是编排在所有选做题首位;此题所属的位置是编排在所有选做题首位;受原有初受原有初中知识基础影响,大多数考生对平面几何并不感到陌生中知识基础影响,大多数考生对平面几何并不感到陌生.因为第因为第一个问较为容易下手。一个问较为容易下手。第(第(2224)题)题(选做题选做题) 考生失分的主要原因:考生在做第一问的时候,很多人都是通过证明考生失分的主要原因:考生在做第一问的时候,很多人都是通过证明相似三角形得到结论的,但条件列举不充分相似三角形得到结论的,但条件列举不充分.其实,如果熟悉射影定其实,如果熟悉射影定理的话,只需要寻求符合射影定理要求的条件理的话,只需要寻求符合射影定理要求的条件,即可得到证明即可得到证明.其次,其次,很多考生都犯了同一个错误,即很多考生都犯了同一个错误,即“会而不全会而不全”,就是懂做也拿不了满就是懂做也拿不了满分分.很多很多考生在没有列出已知条件的情况就得出考生在没有列出已知条件的情况就得出,或是没有指出在或是没有指出在中,就由射影定理得出结论。这些也是失分的重要原因中,就由射影定理得出结论。这些也是失分的重要原因.第(第(2224)题)题(选做题选做题) 第第23题题 本题综合考查参数方程与普通方程的互化、坐标的压缩变换、直线与圆本题综合考查参数方程与普通方程的互化、坐标的压缩变换、直线与圆锥曲线(包括圆)的位置关系的判定,数形结合思想的考查,属于中档锥曲线(包括圆)的位置关系的判定,数形结合思想的考查,属于中档偏难的题,区分度较好偏难的题,区分度较好学生的解答情况一般,除评分标准所给的答案外,多数考生的解答方法学生的解答情况一般,除评分标准所给的答案外,多数考生的解答方法是将参数方程为普通方程,再利用普通方程联立方程组,消元得一元二是将参数方程为普通方程,再利用普通方程联立方程组,消元得一元二次方程,用判别式判定曲线公共点个数,也有的利用点到直线距离判定次方程,用判别式判定曲线公共点个数,也有的利用点到直线距离判定曲线公共点个数。曲线公共点个数。第第2问求压缩后的参数方程,多数考生的解法与标准答案一致,对于压问求压缩后的参数方程,多数考生的解法与标准答案一致,对于压缩后的直线与椭圆仍然只有一个公共点的论证,多数考生沿用第一问的缩后的直线与椭圆仍然只有一个公共点的论证,多数考生沿用第一问的解法。除上述解法外,一部分同学在求压缩后的参数方程时,先求将曲解法。除上述解法外,一部分同学在求压缩后的参数方程时,先求将曲线压缩后的普通方程,再将普通方程化为参数方程,由椭圆的普通方程线压缩后的普通方程,再将普通方程化为参数方程,由椭圆的普通方程化为参数方程形式上比较单一,然而由直线的普通方程求参数方程时,化为参数方程形式上比较单一,然而由直线的普通方程求参数方程时,形式上就多样化了,这就给教师评卷带来一定的困难。还有一部分同学形式上就多样化了,这就给教师评卷带来一定的困难。还有一部分同学在求两曲线公共点时,没有将两参数方程均化为普通方程,而是将其中在求两曲线公共点时,没有将两参数方程均化为普通方程,而是将其中一参数方程化为普通方程,将第二个参数方程与普通方程联立求解,通一参数方程化为普通方程,将第二个参数方程与普通方程联立求解,通过确定参数的解的个数来确定两曲线的公共点的个数。过确定参数的解的个数来确定两曲线的公共点的个数。第(第(2224)题)题(选做题选做题) 第第23题题 考生对曲线的伸缩变换的知识掌握不好,其典型错误的案例为:考生对曲线的伸缩变换的知识掌握不好,其典型错误的案例为:(2)压缩后的参数方程为)压缩后的参数方程为压缩后压缩后的参数方程为的参数方程为还有一部分考生在作答时将曲线上各点的横、纵坐标均压缩为原来的一还有一部分考生在作答时将曲线上各点的横、纵坐标均压缩为原来的一半,没有认真的理解题意。再者,学生的运算能力太差,表现在:半,没有认真的理解题意。再者,学生的运算能力太差,表现在:1)直线方程与圆、椭圆方程联立消元后方程式出错;)直线方程与圆、椭圆方程联立消元后方程式出错;2)方程式正确判别式计算出错;)方程式正确判别式计算出错;3)判别式公式出错;)判别式公式出错;4)判别式)判别式=0,两曲线无交点或两交点;,两曲线无交点或两交点;第(第(2224)题)题(选做题选做题) 第第23题题 评卷过程中,我们在感叹学生计算能力太差的同时,对学生最基本的评卷过程中,我们在感叹学生计算能力太差的同时,对学生最基本的数学知识的缺乏也威到遗憾。数学知识的缺乏也威到遗憾。对于本题的两小题,求两曲线的交点时,均可用判别式对于本题的两小题,求两曲线的交点时,均可用判别式来判定,虽来判定,虽然本题的立意不是如此(用圆心到直线的距离判定圆与直线的关系;然本题的立意不是如此(用圆心到直线的距离判定圆与直线的关系;用判别式用判别式来判定椭圆与直线的关系,但大部分同学均用判别式进行来判定椭圆与直线的关系,但大部分同学均用判别式进行判定,那么在本题中对同一个知识点考查出现了两次,学生如果用判判定,那么在本题中对同一个知识点考查出现了两次,学生如果用判别式别式解第(解第(1)小题,第()小题,第(2)小题根本就不需思考就迎刃而解了,)小题根本就不需思考就迎刃而解了,试题这样设计似乎有些不妥。试题这样设计似乎有些不妥。本题的曲线的伸缩变换,在平时的高考复习中,师生普遍都不太重视,本题的曲线的伸缩变换,在平时的高考复习中,师生普遍都不太重视,这也是造成考生在此题失分的重要原因。这也是造成考生在此题失分的重要原因。第(第(2224)题)题(选做题选做题) 第第24题题 本题考查把含绝对值的函数化成分段函数,研究其图象以及运用图象法本题考查把含绝对值的函数化成分段函数,研究其图象以及运用图象法求解含绝对值的不等式,同时还考查了分类讨论与数形结合的数学思想,求解含绝对值的不等式,同时还考查了分类讨论与数形结合的数学思想,并且在解题的过程中又考查了集合的运算并且在解题的过程中又考查了集合的运算.属于容易题,区分度好但属于容易题,区分度好但是第二问的解法较多,又提高了题目的灵活性。本题充分利用教材中的是第二问的解法较多,又提高了题目的灵活性。本题充分利用教材中的例题为素材例题为素材(P17例例5),考生没有陌生感考生没有陌生感,是选作题中得分率最高的一道题,是选作题中得分率最高的一道题,本题平均分为本题平均分为4.49分,难度系数为分,难度系数为0.45,也是第二卷中难度较小的解答题。也是第二卷中难度较小的解答题。第(第(2224)题)题(选做题选做题) 第第24题题 考生答卷中主要存在以下几种错误考生答卷中主要存在以下几种错误1.分类目标不明确,造成盲目分类:分类目标不明确,造成盲目分类:如分成如分成,甚至不粘边际,甚至不粘边际,五花八门;五花八门;2计算粗心:计算粗心:有些考生已经分类对了,结果去括号时出错,例如,有些考生已经分类对了,结果去括号时出错,例如,时时,等等等等.3作图能力差:作图能力差:有些考生已经通过分类讨论,求出了分段函数,但是没能准确地画出其图象,有些考生已经通过分类讨论,求出了分段函数,但是没能准确地画出其图象,如当如当时时,结果很多考生画出了结果很多考生画出了的图象的图象对试卷的几点商榷对试卷的几点商榷 1、注意了对新教材新增的内容考查,但对新教材增加的、注意了对新教材新增的内容考查,但对新教材增加的合情推理等的思想方法考查的不够。合情推理等的思想方法考查的不够。2、立体几何解答题的难度过大,应降低到去年的水平,、立体几何解答题的难度过大,应降低到去年的水平,并以适当减少全卷的总体运算量的方式把试卷难度降并以适当减少全卷的总体运算量的方式把试卷难度降低到基本符合海南考生实际的水平。低到基本符合海南考生实际的水平。3、解答题的设置,应适当降低门槛,第一问要让多数考、解答题的设置,应适当降低门槛,第一问要让多数考生能下手,并能获得相应的分数。生能下手,并能获得相应的分数。4、开放题的开放度不宜过大,否则会导致考生的答案花、开放题的开放度不宜过大,否则会导致考生的答案花样百出,不同的评卷教师的评判容易出现差异,影响样百出,不同的评卷教师的评判容易出现差异,影响考试的信度。考试的信度。对备考与教学的建议对备考与教学的建议 从阅卷过程以及抽样统计数据看来成绩不尽人意,考生得分率之低,零分率之高,令人惊讶。从阅卷过程以及抽样统计数据看来成绩不尽人意,考生得分率之低,零分率之高,令人惊讶。它淋漓尽致地折射了海南省基础教育之薄弱的现实。它淋漓尽致地折射了海南省基础教育之薄弱的现实。根据今年数学高考命题的导向以及阅卷反馈的信息,建议在中学数学教学中应关注以下几个根据今年数学高考命题的导向以及阅卷反馈的信息,建议在中学数学教学中应关注以下几个问题:问题: 1、数学教学必须真正以课标、课本为本,创造性地使用教材,注意教学内容的有效整合,、数学教学必须真正以课标、课本为本,创造性地使用教材,注意教学内容的有效整合,落实基础,重视通性通法,以构建较为完善的知识体系;备考教学要充分关注学生原有的认落实基础,重视通性通法,以构建较为完善的知识体系;备考教学要充分关注学生原有的认知水平和高考考试大纲及其说明,对不同层次的学生进行分类指导,尽可能做到教学定位准知水平和高考考试大纲及其说明,对不同层次的学生进行分类指导,尽可能做到教学定位准确,提高教学效率。确,提高教学效率。2、强化、强化“过程教学过程教学”,在教学各个环节中都要善于发挥数学思想方法的渗透功能,创设思,在教学各个环节中都要善于发挥数学思想方法的渗透功能,创设思维契机,充分展示学生的思维过程与思维轨迹,指导学生进行维契机,充分展示学生的思维过程与思维轨迹,指导学生进行“解题反思解题反思”。3、更新教育理念,引导学生主动学习。改变传统教学方法中老师照本宣科学生机械接受、更新教育理念,引导学生主动学习。改变传统教学方法中老师照本宣科学生机械接受的旧模式,为学生营造自主探究与合作交流的氛围,正确处理自主性学习和有意义的接受性的旧模式,为学生营造自主探究与合作交流的氛围,正确处理自主性学习和有意义的接受性学习的关系。学习的关系。4、关注新课程改革动向,理智探究新课标下、关注新课程改革动向,理智探究新课标下数学高考考试大纲数学高考考试大纲,教学设计与教材处,教学设计与教材处理须实事求是,要重视理须实事求是,要重视必修必修模块的教学。模块的教学。5、数学教学应注意、数学教学应注意“心理教育心理教育”,把培养学习兴趣落到实处,防止厌学情绪的蔓延。,把培养学习兴趣落到实处,防止厌学情绪的蔓延。6指导学生寻求合理、简洁的解题途经,要力争指导学生寻求合理、简洁的解题途经,要力争“保准求快保准求快”,对解答题要规范做答,对解答题要规范做答,努力作到努力作到“会而对,对而全会而对,对而全”,减少无谓失分,减少无谓失分,指导学生总结临场应考的审题与答题方法技,指导学生总结临场应考的审题与答题方法技巧,巧,总结总结考试心理调节的做法与经验,力求找到合适自己的心理调节方式和临场审题、答题考试心理调节的做法与经验,力求找到合适自己的心理调节方式和临场审题、答题的具体方法策略,提高应试能力。的具体方法策略,提高应试能力。解答与评析解答与评析解答与评析解答与评析解答与评析解答与评析解答与评析解答与评析解答与评析解答与评析返回解答与评析解答与评析解答与评析解答与评析解答与评析解答与评析解答与评析解答与评析解答与评析解答与评析返回解答与评析解答与评析返回解答与评析解答与评析返回解答与评析解答与评析解答与评析解答与评析解答与评析解答与评析返回解答与评析解答与评析返回解答与评析解答与评析返回解答与评析解答与评析解答与评析解答与评析解答与评析解答与评析解答与评析解答与评析
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号